4,963 research outputs found
Instanton and Superconductivity in Supersymmetric CP(N-1) Model
The two dimensional supersymmetric CP(N-1) model has a striking similarity to
the N=2 supersymmetric gauge theory in four dimensions. The BPS mass formula
and the curve of the marginal stability (CMS), which exist in the four
dimensional gauge theory, appears in this two dimensional CP(N-1) model. These
two quntities are derived by a one-dimensional n-vector spin model in the large
n limit for the N=2 case. This mapping is further investigated at the critical
point. An application of the study of the BPS mass formula is proposed to the
phenomena of the spin and charge separations in the Higgs phase.Comment: 6 page
Stem Cells: Potential Therapy for Neonatal Injury?
Stem cell transplantation (SCT) is an established first-line or adjunctive therapy for a variety of neonatal and adult diseases. New evidence in preclinical models as well as a few human studies show the potential utility of SCT in neuroprotection and in the modulation of inflammatory injury in at risk-neonates. This review briefly summarizes current understanding of human stem cell biology during ontogeny and present recent evidence supporting SCT as a viable approach for postinsult neonatal injury
Synthesis of as-grown superconducting MgB_2 thin films by molecular beam epitaxy in UHV conditions
As-grown superconducting MgB_2 thin films have been grown on SrTiO_3(001),
MgO(001), and Al_2O_3(0001) substrates by a molecular beam epitaxy (MBE) method
with novel co-evaporation conditions of low deposition rate in ultra-high
vacuum. The structural and physical properties of the films were studied by
RHEED, XRD, electrical resistivity measurements, and SQUID magnetometer. The
RHEED patterns indicate three-dimensional growth for MgB_2. The highest T_c
determined by resistivity measurement was about 36K in these samples. And a
clear Meissner effect below T_c was observed using magnetic susceptibility
measurement. We will discuss the influence of B buffer layer on the structural
and physical properties.Comment: 9 pages with 4 figures, ISS2003 proceedin
Noise Enhanced Stability in Fluctuating Metastable States
We derive general equations for the nonlinear relaxation time of Brownian
diffusion in randomly switching potential with a sink. For piece-wise linear
dichotomously fluctuating potential with metastable state, we obtain the exact
average lifetime as a function of the potential parameters and the noise
intensity. Our result is valid for arbitrary white noise intensity and for
arbitrary fluctuation rate of the potential. We find noise enhanced stability
phenomenon in the system investigated: the average lifetime of the metastable
state is greater than the time obtained in the absence of additive white noise.
We obtain the parameter region of the fluctuating potential where the effect
can be observed. The system investigated also exhibits a maximum of the
lifetime as a function of the fluctuation rate of the potential.Comment: 7 pages, 5 figures, to appear in Phys. Rev. E vol. 69 (6),200
Localized thinning for strain concentration in suspended germanium membranes and optical method for precise thickness measurement
We deposited Ge layers on (001) Si substrates by molecular beam epitaxy and used them to fabricate suspended membranes with high uniaxial tensile strain. We demonstrate a CMOS-compatible fabrication strategy to increase strain concentration and to eliminate the Ge buffer layer near the Ge/Si hetero-interface deposited at low temperature. This is achieved by a two-steps patterning and selective etching process. First, a bridge and neck shape is patterned in the Ge membrane, then the neck is thinned from both top and bottom sides. Uniaxial tensile strain values higher than 3% were measured by Raman scattering in a Ge membrane of 76 nm thickness. For the challenging thickness measurement on micrometer-size membranes suspended far away from the substrate a characterization method based on pump-and-probe reflectivity measurements was applied, using an asynchronous optical sampling technique.EC/FP7/628197/EU/Heat Propagation and Thermal Conductivity in Nanomaterials for Nanoscale Energy Management/HEATPRONAN
Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium
The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on
the basis of spatio-temporal pattern formation by local
contraction-oscillators. This biological system can be regarded as a
reaction-diffusion system which has spatial interaction by active flow of
protoplasmic sol in the cell. Paying attention to the physiological evidence
that the flow is determined by contraction pattern in the plasmodium, a
reaction-diffusion system having self-determined flow arises. Such a coupling
of reaction-diffusion-advection is a characteristic of the biological system,
and is expected to relate with control mechanism of amoeboid behaviours. Hence,
we have studied effects of the self-determined flow on pattern formation of
simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial
solution, the envelope dynamics follows the complex Ginzburg-Landau type
equation just after bifurcation occurs at finite wave number. The flow term
affects the nonlinear term of the equation through the critical wave number
squared. Contrary to this, wave number isn't explicitly effective with lack of
flow or constant flow. Thus, spatial size of pattern is especially important
for regulating pattern formation in the plasmodium. On the other hand, the flow
term is negligible in the vicinity of bifurcation at infinitely small wave
number, and therefore the pattern formation by simple reaction-diffusion will
also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur
Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators
Experimental observations of time delay induced amplitude death in a pair of
coupled nonlinear electronic circuits that are individually capable of
exhibiting limit cycle oscillations are described. In particular, the existence
of multiply connected death islands in the parameter space of the coupling
strength and the time delay parameter for coupled identical oscillators is
established. The existence of such regions was predicted earlier on theoretical
grounds in [Phys. Rev. Lett. 80, 5109 (1998); Physica 129D, 15 (1999)]. The
experiments also reveal the occurrence of multiple frequency states, frequency
suppression of oscillations with increased time delay and the onset of both
in-phase and anti-phase collective oscillations.Comment: 4 aps formatted RevTeX pages; 6 figures; to appear in Phys. Rev. Let
Analysis of U and Th Series Radionuclides in Soil from Toki Area I. Comparison between Gamma - Ray Spectrometry and ICP-MS
Structural and dynamical properties of liquid Si. An orbital-free molecular dynamics study
Several static and dynamic properties of liquid silicon near melting have
been determined from an orbital free {\em ab-initio} molecular dynamics
simulation. The calculated static structure is in good agreement with the
available X-ray and neutron diffraction data. The dynamical structure shows
collective density excitations with an associated dispersion relation which
closely follows recent experimental data. It is found that liquid silicon can
not sustain the propagation of shear waves which can be related to the power
spectrum of the velocity autocorrelation function. Accurate estimates have also
been obtained for several transport coefficients. The overall picture is that
the dynamic properties have many characteristics of the simple liquid metals
although some conspicuous differences have been found.Comment: 12 pages, 11 figure
- …
