616 research outputs found
Treatment of Linear and Nonlinear Dielectric Property of Molecular Monolayer and Submonolayer with Microscopic Dipole Lattice Model: I. Second Harmonic Generation and Sum-Frequency Generation
In the currently accepted models of the nonlinear optics, the nonlinear
radiation was treated as the result of an infinitesimally thin polarization
sheet layer, and a three layer model was generally employed. The direct
consequence of this approach is that an apriori dielectric constant, which
still does not have a clear definition, has to be assigned to this polarization
layer. Because the Second Harmonic Generation (SHG) and the Sum-Frequency
Generation vibrational Spectroscopy (SFG-VS) have been proven as the sensitive
probes for interfaces with the submonolayer coverage, the treatment based on
the more realistic discrete induced dipole model needs to be developed. Here we
show that following the molecular optics theory approach the SHG, as well as
the SFG-VS, radiation from the monolayer or submonolayer at an interface can be
rigorously treated as the radiation from an induced dipole lattice at the
interface. In this approach, the introduction of the polarization sheet is no
longer necessary. Therefore, the ambiguity of the unaccounted dielectric
constant of the polarization layer is no longer an issue. Moreover, the
anisotropic two dimensional microscopic local field factors can be explicitly
expressed with the linear polarizability tensors of the interfacial molecules.
Based on the planewise dipole sum rule in the molecular monolayer, crucial
experimental tests of this microscopic treatment with SHG and SFG-VS are
discussed. Many puzzles in the literature of surface SHG and SFG spectroscopy
studies can also be understood or resolved in this framework. This new
treatment may provide a solid basis for the quantitative analysis in the
surface SHG and SFG studies.Comment: 23 pages, 3 figure
Loss of heterozygosity in multistage carcinogenesis of esophageal carcinoma at high-incidence area in Henan Province, China
Aim: Microsatellites are the repeated DNA sequences scattered widely within the genomes and closely linked with many important genes. This study was designed to characterize the changes of microsatellite DNA loss of heterozygosity (LOH) in esophageal carcinogenesis. Methods: Allelic deletions in 32 cases of matched precancerous, cancerous and normal tissues were examined by syringe microdissection under an anatomic microscope and microsatellite polymorphism analysis using 15 polymorphic markers on chromosomes 3p, 5q, 6p, 9p, 13q, 17p, 17q and 18q. Results: Microsatellite DNA LOH was observed in precancerous and cancerous tissues, except D9S1752. The rate of LOH increased remarkably with the lesions progressed from basal cell hyperplasia (BCH) to squamous cell carcinoma (SCC) (P60%). LOH loci were different in precancerous and cancerous tissues. LOH in D3S1234 and TP53 was the common event in different lesions from the same patients. Conclusion: Microsatellite DNA LOH occurs in early stage of human esophageal carcinogenesis, even in BCH. With the lesion progressed, gene instability increases, the accumulation of this change may be one of the important mechanisms driving precancerous lesions to cancer. © 2005 The WJG Press and Elsevier Inc. All rights reserved.published_or_final_versio
Impact of a referral management “gateway” on the quality of referral letters; a retrospective time series cross sectional review
Background
Referral management centres (RMC) for elective referrals are designed to facilitate the primary to secondary care referral path, by improving quality of referrals and easing pressures on finite secondary care services, without inadvertently compromising patient care.
This study aimed to evaluate whether the introduction of a RMC which includes triage and feedback improved the quality of elective outpatient referral letters.
Methods
Retrospective, time-series, cross-sectional review involving 47 general practices in one primary care trust (PCT) in South-East England. Comparison of a random sample of referral letters at baseline (n = 301) and after seven months of referral management (n = 280). Letters were assessed for inclusion of four core pieces of information which are used locally to monitor referral quality (blood pressure, body mass index, past medical history, medication history) and against research-based quality criteria for referral letters (provision of clinical information and clarity of reason for referral).
Results
Following introduction of the RMC, the proportion of letters containing each of the core items increased compared to baseline. Statistically significant increases in the recording of ‘past medical history’ (from 71% to 84%, p < 0.001) and ‘medication history’ (78% to 87%, p = 0.006) were observed. Forty four percent of letters met the research-based quality criteria at baseline but there was no significant change in quality of referral letters judged on these criteria across the two time periods.
Conclusion
Introduction of RMC has improved the inclusion of past medical history and medication history in referral letters, but not other measures of quality. In approximately half of letters there remains room for further improvement
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Optimal Scaling Quantum Linear-Systems Solver via Discrete Adiabatic Theorem
Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches have enabled near-linear scaling in the condition number κ of the linear system, without requiring a complicated variable-time amplitude amplification procedure. However, the most efficient of those procedures is still asymptotically suboptimal by a factor of log(κ). Here, we prove a rigorous form of the adiabatic theorem that bounds the error in terms of the spectral gap for intrinsically discrete-time evolutions. In combination with the qubitized quantum walk, our discrete adiabatic theorem gives a speed-up for all adiabatic algorithms. Here, we use this combination to develop a quantum algorithm for solving linear systems that is asymptotically optimal, in the sense that the complexity is strictly linear in κ, matching a known lower bound on the complexity. Our O[κlog(1/ µ)] complexity is also optimal in terms of the combined scaling in κ and the precision µ. Compared to existing suboptimal methods, our algorithm is simpler and easier to implement. Moreover, we determine the constant factors in the algorithm, which would be suitable for determining the complexity in terms of gate counts for specific applications
Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast
Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones. © 2011 Bell et al
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
Establishing semantic interoperability in the course of clinical document exchange using international standard for metadata registry
Around the world electronic health records data are being shared and exchanged between two different systems for direct patient care, as well as for research, reimbursement, quality assurance, epidemiology, public health, and policy development. It is important to communicate the semantic meaning of the clinical data when exchanging electronic health records data. In order to achieve semantic interoperability of clinical data, it is important not only to specify clinical entries and documents and the structure of data in electronic health records, but also to use clinical terminology to describe clinical data. There are three types of clinical terminology: interface terminology to support a user-friendly structured data entry; reference terminology to store, retrieve, and analyze clinical data; and classification to aggregate clinical data for secondary use. In order to use electronic health records data in an efficient way, healthcare providers first need to record clinical content using a systematic and controlled interface terminology, then clinical content needs to be stored with reference terminology in a clinical data repository or data warehouse, and finally, the clinical content can be converted into a classification for reimbursement and statistical reporting. For electronic health records data collected at the point of care to be used for secondary purposes, it is necessary to map reference terminology with interface terminology and classification. It is necessary to adopt clinical terminology in electronic health records systems to ensure a high level of semantic interoperability
Intent recognition in smart living through deep recurrent neural networks
Electroencephalography (EEG) signal based intent recognition has recently
attracted much attention in both academia and industries, due to helping the
elderly or motor-disabled people controlling smart devices to communicate with
outer world. However, the utilization of EEG signals is challenged by low
accuracy, arduous and time- consuming feature extraction. This paper proposes a
7-layer deep learning model to classify raw EEG signals with the aim of
recognizing subjects' intents, to avoid the time consumed in pre-processing and
feature extraction. The hyper-parameters are selected by an Orthogonal Array
experiment method for efficiency. Our model is applied to an open EEG dataset
provided by PhysioNet and achieves the accuracy of 0.9553 on the intent
recognition. The applicability of our proposed model is further demonstrated by
two use cases of smart living (assisted living with robotics and home
automation).Comment: 10 pages, 5 figures,5 tables, 21 conference
The d subunit plays a central role in human vacuolar H+-ATPases
The multi-subunit vacuolar-type H+-ATPase consists of a V1 domain (A–H subunits) catalyzing ATP hydrolysis and a V0 domain (a, c, c′, c″, d, e) responsible for H+ translocation. The mammalian V0 d subunit is one of the least-well characterized, and its function and position within the pump are still unclear. It has two different forms encoded by separate genes, d1 being ubiquitous while d2 is predominantly expressed at the cell surface in kidney and osteoclast. To determine whether it forms part of the pump’s central stalk as suggested by bacterial A-ATPase studies, or is peripheral as hypothesized from a yeast model, we investigated both human d subunit isoforms. In silico structural modelling demonstrated that human d1 and d2 are structural orthologues of bacterial subunit C, despite poor sequence identity. Expression studies of d1 and d2 showed that each can pull down the central stalk’s D and F subunits from human kidney membrane, and in vitro studies using D and F further showed that the interactions between these proteins and the d subunit is direct. These data indicate that the d subunit in man is centrally located within the pump and is thus important in its rotary mechanism
- …
