32 research outputs found

    Novel functions and regulation of cryptic cellobiose operons in Escherichia coli

    Get PDF
    Presence of cellobiose as a sole carbon source induces mutations in the chb and asc operons of Escherichia coli and allows it to grow on cellobiose. We previously engineered these two operons with synthetic constitutive promoters and achieved efficient cellobiose metabolism through adaptive evolution. In this study, we characterized two mutations observed in the efficient cellobiose metabolizing strain: duplication of RBS of ascB gene, (beta-glucosidase of asc operon) and nonsense mutation in yebK, (an uncharacterized transcription factor). Mutations in yebK play a dominant role by modulating the length of lag phase, relative to the growth rate of the strain when transferred from a rich medium to minimal cellobiose medium. Mutations in ascB, on the other hand, are specific for cellobiose and help in enhancing the specific growth rate. Taken together, our results show that ascB of the asc operon is controlled by an internal putative promoter in addition to the native cryptic promoter, and the transcription factor yebK helps to remodel the host physiology for cellobiose metabolism. While previous studies characterized the stress-induced mutations that allowed growth on cellobiose, here, we characterize the adaptation-induced mutations that help in enhancing cellobiose metabolic ability. This study will shed new light on the regulatory changes and factors that are needed for the functional coupling of the host physiology to the activated cryptic cellobiose metabolismopen1

    The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    Get PDF
    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02-03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313

    Genome engineering for improved recombinant protein expression in Escherichia coli

    Get PDF

    Characterization of the yehUT Two-Component Regulatory System of Salmonella enterica Serovar Typhi and Typhimurium

    Get PDF
    10.1371/journal.pone.0084567PLoS ONE812-POLN

    Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production

    No full text
    Artemisinin is a potent antimalarial drug; however, it suffers from unstable and insufficient supply from plant source. Here, we established a novel multivariate-modular approach based on experimental design for systematic pathway optimization that succeeded in improving the production of amorphadiene (AD), the precursor of artemisinin, in Escherichia coli. It was initially found that the AD production was limited by the imbalance of glyceraldehyde 3-phosphate (GAP) and pyruvate (PYR), the two precursors of the 1-deoxy-d-xylulose-5-phosphate (DXP) pathway. Furthermore, it was identified that GAP and PYR could be balanced by replacing the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) with the ATP-dependent galactose permease and glucose kinase system (GGS) and this resulted in fivefold increase in AD titer (11 to 60 mg/L). Subsequently, the experimental design-aided systematic pathway optimization (EDASPO) method was applied to systematically optimize the transcriptional expressions of eight critical genes in the glucose uptake and the DXP and AD synthesis pathways. These genes were classified into four modules and simultaneously controlled by T7 promoter or its variants. A regression model was generated using the four-module experimental data and predicted the optimal expression ratios among these modules, resulting in another threefold increase in AD titer (60 to 201 mg/L). This EDASPO method may be useful for the optimization of other pathways and products beyond the scope of this study.Singapore-MIT Alliance for Research and Technology (SMART
    corecore