1,209 research outputs found
Damage modelling: the current state and the latest progress on the development of creep damage constitutive equations for high Cr steels
This paper reviews the fundamentals of the development of creep damage constitutive equations for high Cr steels including (1) a concise summary of the characteristics of creep deformation and creep damage evolution and their dependence on the stress level and the importance of cavitation for the final fracture; (2) a critical review of the state of art of creep damage equation for high Cr steels; (3) some discussion and comments on the various approaches; (4) consideration and suggestion for future work. It emphasises the need for better understanding the nucleation, cavity growth and coalesces and the theory for coupling method between creep cavity damage and brittle fracture and generalisatio
Reflections on stability technology for reducing risk of system collapse due to cascading outages
Aggregated impact of allowance allocation and power dispatching on emission reduction
Climate change has become one of the most important issues for the sustainable development of social well-being. China has made great efforts in reducing CO2 emissions and promoting clean energy. Pilot Emission Trading Systems (ETSs) have been launched in two provinces and five cities in China, and a national level ETS will be implemented in the third quarter of 2017, with preparations for China’s national ETS now well under way. In the meantime, a new round of China’s electric power system reform has entered the implementation stage. Policy variables from both electricity and emission markets will impose potential risks on the operation of generation companies (GenCos). Under this situation, by selecting key variables in each domain, this paper analyzes the combined effects of different allowance allocation methods and power dispatching models on power system emission. Key parameters are set based on a provincial power system in China, and the case studies are conducted based on dynamic simulation platform for macro-energy systems (DSMES) software developed by the authors. The selected power dispatching models include planned dispatch, energy saving power generation dispatch and economic dispatch. The selected initial allowance allocation methods in the emission market include the grandfathering method based on historical emissions and the benchmarking method based on actual output. Based on the simulation results and discussions, several policy implications are highlighted to help to design an effective emission market in China
Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis
Hydrogen adsorption/desorption behavior plays a key role in hydrogen evolution reaction (HER) catalysis. The HER reaction rate is a trade-off between hydrogen adsorption and desorption on the catalyst surface. Herein, we report the rational balancing of hydrogen adsorption/desorption by orbital modulation using introduced environmental electronegative carbon/nitrogen (C/N) atoms. Theoretical calculations reveal that the empty d orbitals of iridium (Ir) sites can be reduced by interactions between the environmental electronegative C/N and Ir atoms. This balances the hydrogen adsorption/ desorption around the Ir sites, accelerating the related HER process. Remarkably, by anchoring a small amount of Ir nanoparticles (7.16 wt%) in nitrogenated carbon matrixes, the resulting catalyst exhibits significantly enhanced HER performance. This includs the smallest reported overpotential at 10 mA cm(-2) (4.5 mV), the highest mass activity at 10 mV (1.12 A mg(Ir)(-1)) and turnover frequency at 25 mV (4.21 H2 s(-1)) by far, outperforming Ir nanoparticles and commercial Pt/C
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Inhibition of Hypoxia-Inducible Factor-1α (HIF-1α) Protein Synthesis by DNA damage inducing agents
10.1371/journal.pone.0010522PLoS ONE55
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
- …
