908 research outputs found

    Information Gathering in Ad-Hoc Radio Networks with Tree Topology

    Full text link
    We study the problem of information gathering in ad-hoc radio networks without collision detection, focussing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver all rumors to the root of the tree as quickly as possible. The protocol must complete this task within its allotted time even though the actual tree topology is unknown when the computation starts. In the deterministic case, assuming that the nodes are labeled with small integers, we give an O(n)-time protocol that uses unbounded messages, and an O(n log n)-time protocol using bounded messages, where any message can include only one rumor. We also consider fire-and-forward protocols, in which a node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic fire-and- forward protocol with running time O(n^1.5), and we show that it is asymptotically optimal. We then study randomized algorithms where the nodes are not labelled. In this model, we give an O(n log n)-time protocol and we prove that this bound is asymptotically optimal

    Solar influenced late Holocene temperature changes on the northern Tibetan Plateau

    Get PDF
    Considerable efforts have been made to extend temperature records beyond the instrumental period through proxy reconstructions, in order to further understand the mechanisms of past climate variability. Yet, the global coverage of existing temperature records is still limited, especially for some key regions like the Tibetan Plateau and for earlier times including the Medieval Warm Period (MWP). Here we present decadally-resolved, alkenone-based, temperature records from two lakes on the northern Tibetan Plateau. Characterized by marked temperature variability, our records provide evidence that temperatures during the MWP were slightly higher than the modern period in this region. Further, our temperature reconstructions, within age uncertainty, can be well correlated with solar irradiance changes, suggesting a possible link between solar forcing and natural climate variability, at least on the northern Tibetan Plateau. © 2013 The Author(s).published_or_final_versio

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    Numerical modelling of 3D concrete printing: material models, boundary conditions and failure identification

    Full text link
    3D concrete printing (3DCP) attracts significant attention as an innovative manufacturing technology for the construction industry. As one of the challenges in 3DCP, failure mechanisms of 3D printed concrete structures were not well understood yet and hard to predict. The three-dimensional finite element (FE) method is an effective method to simulate such a layer-by-layer process. However, some existing technical issues in FE modelling, including additional initial deformations, failure identification, selection of material models, concrete foundation interactions and initial imperfections, need to be addressed for accurate simulation of 3DCP. In this study, FE models using a novel tracing element approach are developed to capture mechanical behaviours and failure modes of typical 3D printed concrete structures. The developed FE models was validated by comparing the obtained numerical results with those data available in literature. Furthermore, four material constitutive models are investigated analytically and numerically to compare their applicability in modelling 3D printed concrete structures. The obtained results show that the Mohr-Coulomb and Concrete Damage Plasticity (CDP) models can accurately predict failure behaviours of 3D printed concrete structures

    Incorporating coarse aggregates into 3D concrete printing from mixture design and process control to structural behaviours and practical applications: a review

    Full text link
    Three-dimensional concrete printing (3DCP) is progressing from lab pilots to large-scale manufacturing, encountering limitations with conventional printable material  – cement mortar. Coarse aggregate concrete (CAC) emerges as a promising alternative due to its superior material properties, cost-effectiveness, and sustainability, attracting considerable interest in academia and industry. This paper explores the integration of CAC into 3DCP, focusing on three critical aspects: mixture design of 3D printable concrete, innovative methods of 3D printing process, and structural behaviours of 3D printed concrete specimens, structural members and systems. It elucidates the relationships among mixture composition, processing parameters, early-age material properties, and printability requirements. Furthermore, particle-bed 3D printing technology for CAC is discussed, highlighting advantages and challenges compared to extrusion methods. Ultimately, this review provides valuable insights into the technical challenges and prospects of 3D printing coarse aggregate concrete (3DPCAC) technology, aiming to foster advancements in research and construction practices

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV

    Get PDF
    We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio
    corecore