908 research outputs found
Information Gathering in Ad-Hoc Radio Networks with Tree Topology
We study the problem of information gathering in ad-hoc radio networks
without collision detection, focussing on the case when the network forms a
tree, with edges directed towards the root. Initially, each node has a piece of
information that we refer to as a rumor. Our goal is to design protocols that
deliver all rumors to the root of the tree as quickly as possible. The protocol
must complete this task within its allotted time even though the actual tree
topology is unknown when the computation starts. In the deterministic case,
assuming that the nodes are labeled with small integers, we give an O(n)-time
protocol that uses unbounded messages, and an O(n log n)-time protocol using
bounded messages, where any message can include only one rumor. We also
consider fire-and-forward protocols, in which a node can only transmit its own
rumor or the rumor received in the previous step. We give a deterministic
fire-and- forward protocol with running time O(n^1.5), and we show that it is
asymptotically optimal. We then study randomized algorithms where the nodes are
not labelled. In this model, we give an O(n log n)-time protocol and we prove
that this bound is asymptotically optimal
Solar influenced late Holocene temperature changes on the northern Tibetan Plateau
Considerable efforts have been made to extend temperature records beyond the instrumental period through proxy reconstructions, in order to further understand the mechanisms of past climate variability. Yet, the global coverage of existing temperature records is still limited, especially for some key regions like the Tibetan Plateau and for earlier times including the Medieval Warm Period (MWP). Here we present decadally-resolved, alkenone-based, temperature records from two lakes on the northern Tibetan Plateau. Characterized by marked temperature variability, our records provide evidence that temperatures during the MWP were slightly higher than the modern period in this region. Further, our temperature reconstructions, within age uncertainty, can be well correlated with solar irradiance changes, suggesting a possible link between solar forcing and natural climate variability, at least on the northern Tibetan Plateau. © 2013 The Author(s).published_or_final_versio
Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation
The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts
Recommended from our members
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments.
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}
Numerical modelling of 3D concrete printing: material models, boundary conditions and failure identification
3D concrete printing (3DCP) attracts significant attention as an innovative manufacturing technology for the construction industry. As one of the challenges in 3DCP, failure mechanisms of 3D printed concrete structures were not well understood yet and hard to predict. The three-dimensional finite element (FE) method is an effective method to simulate such a layer-by-layer process. However, some existing technical issues in FE modelling, including additional initial deformations, failure identification, selection of material models, concrete foundation interactions and initial imperfections, need to be addressed for accurate simulation of 3DCP. In this study, FE models using a novel tracing element approach are developed to capture mechanical behaviours and failure modes of typical 3D printed concrete structures. The developed FE models was validated by comparing the obtained numerical results with those data available in literature. Furthermore, four material constitutive models are investigated analytically and numerically to compare their applicability in modelling 3D printed concrete structures. The obtained results show that the Mohr-Coulomb and Concrete Damage Plasticity (CDP) models can accurately predict failure behaviours of 3D printed concrete structures
Incorporating coarse aggregates into 3D concrete printing from mixture design and process control to structural behaviours and practical applications: a review
Three-dimensional concrete printing (3DCP) is progressing from lab pilots to large-scale manufacturing, encountering limitations with conventional printable material – cement mortar. Coarse aggregate concrete (CAC) emerges as a promising alternative due to its superior material properties, cost-effectiveness, and sustainability, attracting considerable interest in academia and industry. This paper explores the integration of CAC into 3DCP, focusing on three critical aspects: mixture design of 3D printable concrete, innovative methods of 3D printing process, and structural behaviours of 3D printed concrete specimens, structural members and systems. It elucidates the relationships among mixture composition, processing parameters, early-age material properties, and printability requirements. Furthermore, particle-bed 3D printing technology for CAC is discussed, highlighting advantages and challenges compared to extrusion methods. Ultimately, this review provides valuable insights into the technical challenges and prospects of 3D printing coarse aggregate concrete (3DPCAC) technology, aiming to foster advancements in research and construction practices
Structure of hadron resonances with a nearby zero of the amplitude
We discuss the relation between the analytic structure of the scattering
amplitude and the origin of an eigenstate represented by a pole of the
amplitude.If the eigenstate is not dynamically generated by the interaction in
the channel of interest, the residue of the pole vanishes in the zero coupling
limit. Based on the topological nature of the phase of the scattering
amplitude, we show that the pole must encounter with the
Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the
dynamical component of the eigenstate is small if a CDD zero exists near the
eigenstate pole. We show that the line shape of the resonance is distorted from
the Breit-Wigner form as an observable consequence of the nearby CDD zero.
Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma
amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV
We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
- …
