3 research outputs found

    Determining gene expression on a single pair of microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In microarray experiments the numbers of replicates are often limited due to factors such as cost, availability of sample or poor hybridization. There are currently few choices for the analysis of a pair of microarrays where N = 1 in each condition. In this paper, we demonstrate the effectiveness of a new algorithm called PINC (PINC is Not Cyber-T) that can analyze Affymetrix microarray experiments.</p> <p>Results</p> <p>PINC treats each pair of probes within a probeset as an independent measure of gene expression using the Bayesian framework of the Cyber-T algorithm and then assigns a corrected p-value for each gene comparison.</p> <p>The p-values generated by PINC accurately control False Discovery rate on Affymetrix control data sets, but are small enough that family-wise error rates (such as the Holm's step down method) can be used as a conservative alternative to false discovery rate with little loss of sensitivity on control data sets.</p> <p>Conclusion</p> <p>PINC outperforms previously published methods for determining differentially expressed genes when comparing Affymetrix microarrays with N = 1 in each condition. When applied to biological samples, PINC can be used to assess the degree of variability observed among biological replicates in addition to analyzing isolated pairs of microarrays.</p

    Genome-Wide Maps of Circulating miRNA Biomarkers for Ulcerative Colitis

    Get PDF
    Inflammatory Bowel Disease – comprised of Crohn's Disease and Ulcerative Colitis (UC) - is a complex, multi-factorial inflammatory disorder of the gastrointestinal tract. In this study we have explored the utility of naturally occurring circulating miRNAs as potential blood-based biomarkers for non-invasive prediction of UC incidences. Whole genome maps of circulating miRNAs in micro-vesicles, Peripheral Blood Mononuclear Cells and platelets have been constructed from a cohort of 20 UC patients and 20 normal individuals. Through Significance Analysis of Microarrays, a signature of 31 differentially expressed platelet-derived miRNAs has been identified and biomarker performance estimated through a non-probabilistic binary linear classification using Support Vector Machines. Through this approach, classifier measurements reveal a predictive score of 92.8% accuracy, 96.2% specificity and 89.5% sensitivity in distinguishing UC patients from normal individuals. Additionally, the platelet-derived biomarker signature can be validated at 88% accuracy through qPCR assays, and a majority of the miRNAs in this panel can be demonstrated to sub-stratify into 4 highly correlated intensity based clusters. Analysis of predicted targets of these biomarkers reveal an enrichment of pathways associated with cytoskeleton assembly, transport, membrane permeability and regulation of transcription factors engaged in a variety of regulatory cascades that are consistent with a cell-mediated immune response model of intestinal inflammation. Interestingly, comparison of the miRNA biomarker panel and genetic loci implicated in IBD through genome-wide association studies identifies a physical linkage between hsa-miR-941 and a UC susceptibility loci located on Chr 20. Taken together, analysis of these expression maps outlines a promising catalog of novel platelet-derived miRNA biomarkers of clinical utility and provides insight into the potential biological function of these candidates in disease pathogenesis
    corecore