1,731 research outputs found

    Modelling the emergent dynamics and major metabolites of the human colonic microbiota

    Get PDF
    Funded by Scottish Government's Rural and Environment Science and Analytical Services Division (RESAS) Acknowledgements We would like to thank Thanasis Vogogias, David Nutter and Alec Mann for their assistance in developing the software for this model. We also acknowledge the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS) for their financial support. Furthermore,many thanks go to the two anonymous reviewers whose hard work has greatly improved this paper.Peer reviewedPublisher PD

    Evolutionarily stable defence and signalling of that defence

    Get PDF
    We examine the evolution and maintenance of defence and conspicuousness in prey species using a game theoretic model. In contrast to previous works, predators can raise as well as lower their attack probabilities as a consequence of encountering moderately defended prey. Our model predicts four distinct possibilities for evolutionarily stable strategies (ESSs) featuring maximum crypsis. Namely that such a solution can exist with (1) zero toxicity, (2) a non-zero but non-aversive level of toxicity, (3) a high, aversive level of toxicity or (4) that no such maximally cryptic solution exists. Maximally cryptic prey may still invest in toxins, because of the increased chance of surviving an attack (should they be discovered) that comes from having toxins. The toxin load of maximally cryptic prey may be sufficiently strong that the predators will find them aversive, and seek to avoid similar looking prey in future. However, this aversiveness does not always necessarily trigger aposematic signalling, and highly toxic prey can still be maximally cryptic, because the increased initial rate of attack from becoming more conspicuous is not necessarily always compensated for by increased avoidance of aversive prey by predators. In other circumstances, the optimal toxin load may be insufficient to generate aversion but still be non-zero (because it increases survival), and in yet other circumstances, it is optimal to make no investment in toxins at all. The model also predicts ESSs where the prey are highly defended and aversive and where this defence is advertised at a cost of increased conspicuousness to predators. In many circumstances there is an infinite array of these aposematic ESSs, where the precise appearance is unimportant as long as it is highly visible and shared by all members of the population. Yet another class of solutions is possible where there is strong between-individual variation in appearance between conspicuous, poorly defended prey

    Beyond Trade Frictions—A New Horizon for U.S.-Japan Economic Relations

    Get PDF

    Protective Effects of Vitamin E Analogs against Carbon Tetrachloride-Induced Fatty Liver in Rats

    Get PDF
    Recently, it has been reported that α-tocopherol (α-Toc) is effective for amelioration of liver damage. However, it is unknown whether other vitamin E analogs are effective. In this study, we investigated the effects of γ-tocopherol (γ-Toc) and tocotrienols (T3) in rats with fatty liver. Rats fed a vitamin E-deficient diet for four weeks were divided into eight groups: Control, carbon tetrachloride (CCl4), α-Toc, α-Toc + CCl4, γ-Toc, γ-Toc + CCl4, T3 mix, T3 mix + CCl4. After a 24 h fast, the rats were administered 20 mg of each of the vitamin E analogs, respectively. Moreover, the CCl4 group were given 0.5 ml/kg body weight corn oil preparation containing CCl4 6 h after vitamin E administration. We measured the activities of aspartate aminotransferase and alanine aminotransferase (ALT) in plasma, and the contents of triglyceride (TG), total cholesterol (T-Chol) and vitamin E analogs in the liver. Also, we determined the hepatic expression of mRNA for inflammatory cytokines. The liver TG content in the γ-Toc + CCl4 and T3 mix + CCl4 groups was decreased in comparison with the CCl4 group. Moreover, ALT activity in the T3 mix + CCl4 group was significantly lower than CCl4 group. These findings suggest that γ-Toc and T3 are effective for amelioration of fatty liver

    Almond Snacking for 8 wk Increases Alpha-Diversity of the Gastrointestinal Microbiome and Decreases Bacteroides fragilis Abundance Compared with an Isocaloric Snack in College Freshmen.

    Get PDF
    BackgroundChanges in gut microbiota are associated with cardiometabolic disorders and are influenced by diet. Almonds are a rich source of fiber, unsaturated fats, and polyphenols, all nutrients that can favorably alter the gut microbiome.ObjectivesThe aim of this study was to examine the effects of 8 wk of almond snacking on the gut (fecal) microbiome diversity and abundance compared with an isocaloric snack of graham crackers in college freshmen.MethodsA randomized, controlled, parallel-arm, 8-wk intervention in 73 college freshmen (age: 18-19 y; 41 women and 32 men; BMI: 18-41 kg/m2) with no cardiometabolic disorders was conducted. Participants were randomly allocated to either an almond snack group (56.7 g/d; 364 kcal; n = 38) or graham cracker control group (77.5 g/d; 338 kcal/d; n = 35). Stool samples were collected at baseline and 8 wk after the intervention to assess primary microbiome outcomes, that is, gut microbiome diversity and abundance.ResultsAlmond snacking resulted in 3% greater quantitative alpha-diversity (Shannon index) and 8% greater qualitative alpha-diversity (Chao1 index) than the cracker group after the intervention (P < 0.05). Moreover, almond snacking for 8 wk decreased the abundance of the pathogenic bacterium Bacteroides fragilis by 48% (overall relative abundance, P < 0.05). Permutational multivariate ANOVA showed significant time effects for the unweighted UniFrac distance and Bray-Curtis beta-diversity methods (P < 0.05; R 2 ≤ 3.1%). The dietary and clinical variables that best correlated with the underlying bacterial community structure at week 8 of the intervention included dietary carbohydrate (percentage energy), dietary fiber (g), and fasting total and HDL cholesterol (model Spearman rho = 0.16; P = 0.01).ConclusionsAlmond snacking for 8 wk improved alpha-diversity compared with cracker snacking. Incorporating a morning snack in the dietary regimen of predominantly breakfast-skipping college freshmen improved the diversity and composition of the gut microbiome. This trial was registered at clinicaltrials.gov as NCT03084003
    corecore