2,961 research outputs found
The Transnational Case in Conflict of Laws: Two Suggestions for the New Restatement Third of Conflict of Laws—Judicial Jurisdiction over Foreign Defendants and Party Autonomy in International Contracts
Large N Quantum Time Evolution Beyond Leading Order
For quantum theories with a classical limit (which includes the large N
limits of typical field theories), we derive a hierarchy of evolution equations
for equal time correlators which systematically incorporate corrections to the
limiting classical evolution. Explicit expressions are given for
next-to-leading order, and next-to-next-to-leading order time evolution. The
large N limit of N-component vector models, and the usual semiclassical limit
of point particle quantum mechanics are used as concrete examples. Our
formulation directly exploits the appropriate group structure which underlies
the construction of suitable coherent states and generates the classical phase
space. We discuss the growth of truncation error with time, and argue that
truncations of the large-N evolution equations are generically expected to be
useful only for times short compared to a ``decoherence'' time which scales
like N^{1/2}.Comment: 36 pages, 2 eps figures, latex, uses revtex, epsfig, float
Photon Emission from Ultrarelativistic Plasmas
The emission rate of photons from a hot, weakly coupled ultrarelativistic
plasma is analyzed. Leading-log results, reflecting the sensitivity of the
emission rate to scattering events with momentum transfers from to ,
have previously been obtained. But a complete leading-order treatment requires
including collinearly enhanced, inelastic processes such as bremsstrahlung.
These inelastic processes receive O(1) modifications from multiple scattering
during the photon emission process, which limits the coherence length of the
emitted radiation (the Landau-Pomeranchuk-Migdal effect). We perform a
diagrammatic analysis to identify, and sum, all leading-order contributions. We
find that the leading-order photon emission rate is not sensitive to
non-perturbative scale dynamics. We derive an integral equation for the
photon emission rate which is very similar to the result of Migdal in his
original discussion of the LPM effect. The accurate solution of this integral
equation for specific theories of interest will be reported in a companion
paper.Comment: 50 pages, 20 figures. Added references and minor rewordings:
published versio
Necessary and sufficient conditions for non-perturbative equivalences of large N orbifold gauge theories
Large N coherent state methods are used to study the relation between U(N)
gauge theories containing adjoint representation matter fields and their
orbifold projections. The classical dynamical systems which reproduce the large
N limits of the quantum dynamics in parent and daughter orbifold theories are
compared. We demonstrate that the large N dynamics of the parent theory,
restricted to the subspace invariant under the orbifold projection symmetry,
and the large N dynamics of the daughter theory, restricted to the untwisted
sector invariant under "theory space'' permutations, coincide. This implies
equality, in the large N limit, between appropriately identified connected
correlation functions in parent and daughter theories, provided the orbifold
projection symmetry is not spontaneously broken in the parent theory and the
theory space permutation symmetry is not spontaneously broken in the daughter.
The necessity of these symmetry realization conditions for the validity of the
large N equivalence is unsurprising, but demonstrating the sufficiency of these
conditions is new. This work extends an earlier proof of non-perturbative large
N equivalence which was only valid in the phase of the (lattice regularized)
theories continuously connected to large mass and strong coupling.Comment: 21 page, JHEP styl
Non-perturbative equivalences among large N gauge theories with adjoint and bifundamental matter fields
We prove an equivalence, in the large N limit, between certain U(N) gauge
theories containing adjoint representation matter fields and their orbifold
projections. Lattice regularization is used to provide a non-perturbative
definition of these theories; our proof applies in the strong coupling, large
mass phase of the theories. Equivalence is demonstrated by constructing and
comparing the loop equations for a parent theory and its orbifold projections.
Loop equations for both expectation values of single-trace observables, and for
connected correlators of such observables, are considered; hence the
demonstrated non-perturbative equivalence applies to the large N limits of both
string tensions and particle spectra.Comment: 40 pages, JHEP styl
An improved time-dependent Hartree-Fock approach for scalar \phi^4 QFT
The model in a finite volume is studied within a
non-gaussian Hartree-Fock approximation (tdHF) both at equilibrium and out of
equilibrium, with particular attention to the structure of the ground state and
of certain dynamical features in the broken symmetry phase. The mean-field
coupled time-dependent Schroedinger equations for the modes of the scalar field
are derived and the suitable procedure to renormalize them is outlined. A
further controlled gaussian approximation of our tdHF approach is used in order
to study the dynamical evolution of the system from non-equilibrium initial
conditions characterized by a uniform condensate. We find that, during the slow
rolling down, the long-wavelength quantum fluctuations do not grow to a
macroscopic size but do scale with the linear size of the system, in accordance
with similar results valid for the large approximation of the O(N) model.
This behavior undermines in a precise way the gaussian approximation within our
tdHF approach, which therefore appears as a viable mean to correct an unlikely
feature of the standard HF factorization scheme, such as the so-called
``stopping at the spinodal line'' of the quantum fluctuations. We also study
the dynamics of the system in infinite volume with particular attention to the
asymptotic evolution in the broken symmetry phase. We are able to show that the
fixed points of the evolution cover at most the classically metastable part of
the static effective potential.Comment: Accepted for publication on Phys. Rev.
- …
