592 research outputs found
The Exemption Status of the Bona Fide Pledgee of Unregistered Securities Under the Securities Act of 1933
The number of connections of photovoltaic (PV) to distribution network is increasing. Very few PV connection guidelines that distribution system operators (DSOs) can refer to have been found. This paper deals with network planning guidelines for distribution networks with PV. The paper aims to identify planning rules that are relatively easy to implement.QC 20140625</p
When Attackers Meet AI: Learning-empowered Attacks in Cooperative Spectrum Sensing
Defense strategies have been well studied to combat Byzantine attacks that
aim to disrupt cooperative spectrum sensing by sending falsified versions of
spectrum sensing data to a fusion center. However, existing studies usually
assume network or attackers as passive entities, e.g., assuming the prior
knowledge of attacks is known or fixed. In practice, attackers can actively
adopt arbitrary behaviors and avoid pre-assumed patterns or assumptions used by
defense strategies. In this paper, we revisit this security vulnerability as an
adversarial machine learning problem and propose a novel learning-empowered
attack framework named Learning-Evaluation-Beating (LEB) to mislead the fusion
center. Based on the black-box nature of the fusion center in cooperative
spectrum sensing, our new perspective is to make the adversarial use of machine
learning to construct a surrogate model of the fusion center's decision model.
We propose a generic algorithm to create malicious sensing data using this
surrogate model. Our real-world experiments show that the LEB attack is
effective to beat a wide range of existing defense strategies with an up to 82%
of success ratio. Given the gap between the proposed LEB attack and existing
defenses, we introduce a non-invasive method named as influence-limiting
defense, which can coexist with existing defenses to defend against LEB attack
or other similar attacks. We show that this defense is highly effective and
reduces the overall disruption ratio of LEB attack by up to 80%
Erosion of a granular bed driven by laminar fluid flow
Motivated by examples of erosive incision of channels in sand, we investigate
the motion of individual grains in a granular bed driven by a laminar fluid to
give us new insights into the relationship between hydrodynamic stress and
surface granular flow. A closed cell of rectangular cross-section is partially
filled with glass beads and a constant fluid flux flows through the cell.
The refractive indices of the fluid and the glass beads are matched and the
cell is illuminated with a laser sheet, allowing us to image individual beads.
The bed erodes to a rest height which depends on . The Shields
threshold criterion assumes that the non-dimensional ratio of the
viscous stress on the bed to the hydrostatic pressure difference across a grain
is sufficient to predict the granular flux. Furthermore, the Shields criterion
states that the granular flux is non-zero only for . We find
that the Shields criterion describes the observed relationship when the bed height is offset by approximately half a grain diameter.
Introducing this offset in the estimation of yields a collapse of the
measured Einstein number to a power-law function of
with exponent . The dynamics of the bed height relaxation are
well described by the power law relationship between the granular flux and the
bed stress.Comment: 12 pages, 5 figure
Threshold phenomena in erosion driven by subsurface flow
We study channelization and slope destabilization driven by subsurface
(groundwater) flow in a laboratory experiment. The pressure of the water
entering the sandpile from below as well as the slope of the sandpile are
varied. We present quantitative understanding of the three modes of sediment
mobilization in this experiment: surface erosion, fluidization, and slumping.
The onset of erosion is controlled not only by shear stresses caused by
surfical flows, but also hydrodynamic stresses deriving from subsurface flows.
These additional forces require modification of the critical Shields criterion.
Whereas surface flows alone can mobilize surface grains only when the water
flux exceeds a threshold, subsurface flows cause this threshold to vanish at
slopes steeper than a critical angle substantially smaller than the maximum
angle of stability. Slopes above this critical angle are unstable to
channelization by any amount of fluid reaching the surface.Comment: 9 pages, 11 figure
A novel experimental technique and its application to study the effects of particle density and flow submergence on bed particle saltation
This research was sponsored by EPSRC grant EP/G056404/1 which is greatly appreciated.Peer reviewedPublisher PD
Corneal Angiography for Guiding and Evaluating Fine-Needle Diathermy Treatment of Corneal Neovascularization
- …
