592 research outputs found

    The Exemption Status of the Bona Fide Pledgee of Unregistered Securities Under the Securities Act of 1933

    Get PDF
    The number of connections of photovoltaic (PV) to distribution network is increasing. Very few PV connection guidelines that distribution system operators (DSOs) can refer to have been found. This paper deals with network planning guidelines for distribution networks with PV. The paper aims to identify planning rules that are relatively easy to implement.QC 20140625</p

    When Attackers Meet AI: Learning-empowered Attacks in Cooperative Spectrum Sensing

    Full text link
    Defense strategies have been well studied to combat Byzantine attacks that aim to disrupt cooperative spectrum sensing by sending falsified versions of spectrum sensing data to a fusion center. However, existing studies usually assume network or attackers as passive entities, e.g., assuming the prior knowledge of attacks is known or fixed. In practice, attackers can actively adopt arbitrary behaviors and avoid pre-assumed patterns or assumptions used by defense strategies. In this paper, we revisit this security vulnerability as an adversarial machine learning problem and propose a novel learning-empowered attack framework named Learning-Evaluation-Beating (LEB) to mislead the fusion center. Based on the black-box nature of the fusion center in cooperative spectrum sensing, our new perspective is to make the adversarial use of machine learning to construct a surrogate model of the fusion center's decision model. We propose a generic algorithm to create malicious sensing data using this surrogate model. Our real-world experiments show that the LEB attack is effective to beat a wide range of existing defense strategies with an up to 82% of success ratio. Given the gap between the proposed LEB attack and existing defenses, we introduce a non-invasive method named as influence-limiting defense, which can coexist with existing defenses to defend against LEB attack or other similar attacks. We show that this defense is highly effective and reduces the overall disruption ratio of LEB attack by up to 80%

    Erosion of a granular bed driven by laminar fluid flow

    Full text link
    Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux QQ flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height hrh_r which depends on QQ. The Shields threshold criterion assumes that the non-dimensional ratio θ\theta of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for θ>θc\theta >\theta_c. We find that the Shields criterion describes the observed relationship hrQ1/2h_r \propto Q^{1/2} when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of θ\theta yields a collapse of the measured Einstein number qq^* to a power-law function of θθc\theta - \theta_c with exponent 1.75±0.251.75 \pm 0.25. The dynamics of the bed height relaxation are well described by the power law relationship between the granular flux and the bed stress.Comment: 12 pages, 5 figure

    Threshold phenomena in erosion driven by subsurface flow

    Full text link
    We study channelization and slope destabilization driven by subsurface (groundwater) flow in a laboratory experiment. The pressure of the water entering the sandpile from below as well as the slope of the sandpile are varied. We present quantitative understanding of the three modes of sediment mobilization in this experiment: surface erosion, fluidization, and slumping. The onset of erosion is controlled not only by shear stresses caused by surfical flows, but also hydrodynamic stresses deriving from subsurface flows. These additional forces require modification of the critical Shields criterion. Whereas surface flows alone can mobilize surface grains only when the water flux exceeds a threshold, subsurface flows cause this threshold to vanish at slopes steeper than a critical angle substantially smaller than the maximum angle of stability. Slopes above this critical angle are unstable to channelization by any amount of fluid reaching the surface.Comment: 9 pages, 11 figure

    A novel experimental technique and its application to study the effects of particle density and flow submergence on bed particle saltation

    Get PDF
    This research was sponsored by EPSRC grant EP/G056404/1 which is greatly appreciated.Peer reviewedPublisher PD
    corecore