47,966 research outputs found

    Monopole Excitation to Cluster States

    Get PDF
    We discuss strength of monopole excitation of the ground state to cluster states in light nuclei. We clarify that the monopole excitation to cluster states is in general strong as to be comparable with the single particle strength and shares an appreciable portion of the sum rule value in spite of large difference of the structure between the cluster state and the shell-model-like ground state. We argue that the essential reasons of the large strength are twofold. One is the fact that the clustering degree of freedom is possessed even by simple shell model wave functions. The detailed feature of this fact is described by the so-called Bayman-Bohr theorem which tells us that SU(3) shell model wave function is equivalent to cluster model wave function. The other is the ground state correlation induced by the activation of the cluster degrees of freedom described by the Bayman-Bohr theorem. We demonstrate, by deriving analytical expressions of monopole matrix elements, that the order of magnitude of the monopole strength is governed by the first reason, while the second reason plays a sufficient role in reproducing the data up to the factor of magnitude of the monopole strength. Our explanation is made by analysing three examples which are the monopole excitations to the 02+0^+_2 and 03+0^+_3 states in 16^{16}O and the one to the 02+0^+_2 state in 12^{12}C. The present results imply that the measurement of strong monopole transitions or excitations is in general very useful for the study of cluster states.Comment: 11 pages, 1 figure: revised versio

    Two-dimensional Dirac fermions with random axial-vector potential

    Full text link
    A Dirac fermion model with random axial-vector potential is proposed. At a special strength of randomness, the symmetry of the action is enhanced, which is due to the gauge symmetry \`a la Nishimori. Some exact scaling exponents of single-particle Green functions are computed. The relationship with the XY gauge glass model is discussed.Comment: 4 page

    Chiral dynamics of Σ\Sigma-hyperons in the nuclear medium

    Full text link
    Using SU(3) chiral perturbation theory we calculate the density-dependent complex mean field UΣ(kf)+iWΣ(kf)U_\Sigma(k_f)+ i W_\Sigma(k_f) of a Σ\Sigma-hyperon in isospin-symmetric nuclear matter. The leading long-range ΣN\Sigma N -interaction arises from one-kaon exchange and from two-pion exchange with a Σ\Sigma- or a Λ\Lambda-hyperon in the intermediate state. We find from the ΣNΛN\Sigma N\to \Lambda N conversion process at nuclear matter saturation density ρ0=0.16\rho_0 = 0.16 fm3^{-3} an imaginary single-particle potential of WΣ(kf0)=21.5W_\Sigma(k_{f0}) =-21.5 MeV, in fair agreement with existing empirical determinations. The genuine long-range contributions from iterated (second order) one-pion exchange with an intermediate Σ\Sigma- or Λ\Lambda-hyperon sum up to a moderately repulsive real single-particle potential of UΣ(kf0)=59U_\Sigma(k_{f0})= 59 MeV. Recently measured (π,K+(\pi^-,K^+) inclusive spectra related to Σ\Sigma^--formation in heavy nuclei give evidence for a Σ\Sigma-nucleus repulsion of similar size. Our results suggest that the net effect of the short-range ΣN\Sigma N-interaction on the Σ\Sigma-nuclear mean field could be small.Comment: 7 pages, 2 figures, published in: Phys. Rev. C 71, 068201 (2005

    Unification of the Standard Model and Dark Matter Sectors in [SU(5)×\timesU(1)]4^4

    Get PDF
    A simple model of dark matter contains a light Dirac field charged under a hidden U(1) gauge symmetry. When a chiral matter content in a strong dynamics satisfies the t'Hooft anomaly matching condition, a massless baryon is a natural candidate of the light Dirac field. One realization is the same matter content as the standard SU(5)×\timesU(1)(BL)_{(B-L)} grand unified theory. We propose a chiral [SU(5)×\timesU(1)]4^4 gauge theory as a unified model of the SM and DM sectors. The low-energy dynamics, which was recently studied, is governed by the hidden U(1)4_4 gauge interaction and the third-family U(1)(BL)3_{(B-L)_3} gauge interaction. This model can realize self-interacting dark matter and alleviate the small-scale crisis of collisionless cold dark matter in the cosmological structure formation. The model can also address the semi-leptonic BB-decay anomaly reported by the LHCb experiment.Comment: 15 pages, 2 figure

    R-Process Nucleosynthesis In Neutrino-Driven Winds From A Typical Neutron Star With M = 1.4 Msun

    Full text link
    We study the effects of the outer boundary conditions in neutrino-driven winds on the r-process nucleosynthesis. We perform numerical simulations of hydrodynamics of neutrino-driven winds and nuclear reaction network calculations of the r-process. As an outer boundary condition of hydrodynamic calculations, we set a pressure upon the outermost layer of the wind, which is approaching toward the shock wall. Varying the boundary pressure, we obtain various asymptotic thermal temperature of expanding material in the neutrino-driven winds for resulting nucleosynthesis. We find that the asymptotic temperature slightly lower than those used in the previous studies of the neutrino-driven winds can lead to a successful r-process abundance pattern, which is in a reasonable agreement with the solar system r-process abundance pattern even for the typical proto-neutron star mass Mns ~ 1.4 Msun. A slightly lower asymptotic temperature reduces the charged particle reaction rates and the resulting amount of seed elements and lead to a high neutron-to-seed ratio for successful r-process. This is a new idea which is different from the previous models of neutrino-driven winds from very massive (Mns ~ 2.0 Msun) and compact (Rns ~ 10 km) neutron star to get a short expansion time and a high entropy for a successful r-process abundance pattern. Although such a large mass is sometimes criticized from observational facts on a neutron star mass, we dissolve this criticism by reconsidering the boundary condition of the wind. We also explore the relation between the boundary condition and neutron star mass, which is related to the progenitor mass, for successful r-process.Comment: 14 pages, 2 figure
    corecore