12,082 research outputs found
A Novel Antenna Selection Scheme for Spatially Correlated Massive MIMO Uplinks with Imperfect Channel Estimation
We propose a new antenna selection scheme for a massive MIMO system with a
single user terminal and a base station with a large number of antennas. We
consider a practical scenario where there is a realistic correlation among the
antennas and imperfect channel estimation at the receiver side. The proposed
scheme exploits the sparsity of the channel matrix for the effective selection
of a limited number of antennas. To this end, we compute a sparse channel
matrix by minimising the mean squared error. This optimisation problem is then
solved by the well-known orthogonal matching pursuit algorithm. Widely used
models for spatial correlation among the antennas and channel estimation errors
are considered in this work. Simulation results demonstrate that when the
impacts of spatial correlation and imperfect channel estimation introduced, the
proposed scheme in the paper can significantly reduce complexity of the
receiver, without degrading the system performance compared to the maximum
ratio combining.Comment: in Proc. IEEE 81st Vehicular Technology Conference (VTC), May 2015, 6
pages, 5 figure
Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance
We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein
condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1
intercombination transition at 689 nm. Significant changes in dynamics are
caused by modifications of scattering length by up to +- ?10a_bg, where the
background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes
in scattering length are monitored through changes in the size of the
condensate after a time-of-flight measurement. Because the background
scattering length is close to zero, blue detuning of the OFR laser with respect
to a photoassociative resonance leads to increased interaction energy and a
faster condensate expansion, whereas red detuning triggers a collapse of the
condensate. The results are modeled with the time-dependent nonlinear
Gross-Pitaevskii equation.Comment: 5 pages, 3 figure
Hyperconjugative Effect on the Electronic Wavefunctions of Ethanol
Hyperconjugation is a basic conception of chemistry. Its straightforward
effect is exhibited by the spatial delocalization characteristics of the
electron density distributions or wavefunctions. Such effects on the electron
wavefunctions of the highest-occupied molecular orbitals (HOMO) of two ethanol
conformers are demonstrated with electron momentum spectroscopy together with
natural bond orbital analyses, exhibiting the distinctly different symmetries
of the HOMO wavefunctions in momentum space.Comment: 3 Figures, 1 Scheme. Submitte
Transition metal oxides for high performance sodium ion battery anodes
Sodium-ion batteries (SIBs) are attracting considerable attention with expectation of replacing lithium-ion batteries (LIBs) in large-scale energy storage systems (ESSs). To explore high performance anode materials for SIBs is highly desired subject to the current anode research mainly limited to carbonaceous materials. In this study, a series of transition metal oxides (TMOs) is successfully demonstrated as anodes for SIBs for the first time. The sodium uptake/extract is confirmed in the way of reversible conversion reaction. The pseudocapacitance-type behavior is also observed in the contribution of sodium capacity. For Fe2O3anode, a reversible capacity of 386 mAh g-1at 100 mA g-1 is achieved over 200 cycles; as high as 233 mAhg-1is sustained even cycling at a large current-density of 5 A g-1
- …
