7,398 research outputs found

    Biases in metallicity measurements from global galaxy spectra: the effects of flux-weighting and diffuse ionized gas contamination

    Get PDF
    Galaxy metallicity scaling relations provide a powerful tool for understanding galaxy evolution, but obtaining unbiased global galaxy gas-phase oxygen abundances requires proper treatment of the various line-emitting sources within spectroscopic apertures. We present a model framework that treats galaxies as ensembles of HII and diffuse ionized gas (DIG) regions of varying metallicities. These models are based upon empirical relations between line ratios and electron temperature for HII regions, and DIG strong-line ratio relations from SDSS-IV MaNGA IFU data. Flux-weighting effects and DIG contamination can significantly affect properties inferred from global galaxy spectra, biasing metallicity estimates by more than 0.3 dex in some cases. We use observationally-motivated inputs to construct a model matched to typical local star-forming galaxies, and quantify the biases in strong-line ratios, electron temperatures, and direct-method metallicities as inferred from global galaxy spectra relative to the median values of the HII region distributions in each galaxy. We also provide a generalized set of models that can be applied to individual galaxies or galaxy samples in atypical regions of parameter space. We use these models to correct for the effects of flux-weighting and DIG contamination in the local direct-method mass-metallicity and fundamental metallicity relations, and in the mass-metallicity relation based on strong-line metallicities. Future photoionization models of galaxy line emission need to include DIG emission and represent galaxies as ensembles of emitting regions with varying metallicity, instead of as single HII regions with effective properties, in order to obtain unbiased estimates of key underlying physical properties.Comment: 37 pages, 29 figures, 4 tables. Accepted to ApJ. See Figures 15-17 for typical global galaxy biases in strong-line ratios, electron temperatures, and direct-method metallicitie

    Optical generation of hybrid entangled state via entangling single-photon-added coherent state

    Full text link
    We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel link between the discrete- and the continuous-variable entanglement in a natural way.Comment: 6 pages, 2 figure

    Highly Coordinated Gene Regulation in Mouse Skeletal Muscle Regeneration

    Get PDF
    Mammalian skeletal muscles are capable of regeneration after injury. Quiescent satellite cells are activated to reenter the cell cycle and to differentiate for repair, recapitulating features of myogenesis during embryonic development. To understand better the molecular mechanism involved in this process in vivo, we employed high density cDNA microarrays for gene expression profiling in mouse tibialis anterior muscles after a cardiotoxin injection. Among 16,267 gene elements surveyed, 3,532 elements showed at least a 2.5-fold change at one or more time points during a 14-day time course. Hierarchical cluster analysis and semiquantitative reverse transcription-PCR showed induction of genes important for cell cycle control and DNA replication during the early phase of muscle regeneration. Subsequently, genes for myogenic regulatory factors, a group of imprinted genes and genes with functions to inhibit cell cycle progression and promote myogenic differentiation, were induced when myogenic stem cells started to differentiate. Induction of a majority of these genes, including E2f1 and E2f2, was abolished in muscles lacking satellite cell activity after gamma radiation. Regeneration was severely compromised in E2f1 null mice but not affected in E2f2 null mice. This study identifies novel genes potentially important for muscle regeneration and reveals highly coordinated myogenic cell proliferation and differentiation programs in adult skeletal muscle regeneration in vivo

    A controlled study of cold dust content in galaxies from z=02z=0-2

    Get PDF
    At z=13z=1-3, the formation of new stars is dominated by dusty galaxies whose far-IR emission indicates they contain colder dust than local galaxies of a similar luminosity. We explore the reasons for the evolving IR emission of similar galaxies over cosmic time using: 1) Local galaxies from GOALS (LIR=10111012L)(L_{\rm IR}=10^{11}-10^{12}\,L_\odot); 2) Galaxies at z0.10.5z\sim0.1-0.5 from the 5MUSES (LIR=10101012LL_{\rm IR}=10^{10}-10^{12}\,L_\odot); 3) IR luminous galaxies spanning z=0.53z=0.5-3 from GOODS and Spitzer xFLS (LIR>1011LL_{\rm IR}>10^{11}\,L_\odot). All samples have Spitzer mid-IR spectra, and Herschel and ground-based submillimeter imaging covering the full IR spectral energy distribution, allowing us to robustly measure LIRSFL_{\rm IR}^{\rm\scriptscriptstyle SF}, TdustT_{\rm dust}, and MdustM_{\rm dust} for every galaxy. Despite similar infrared luminosities, z>0.5z>0.5 dusty star forming galaxies have a factor of 5 higher dust masses and 5K colder temperatures. The increase in dust mass is linked with an increase in the gas fractions with redshift, and we do not observe a similar increase in stellar mass or star formation efficiency. L160SF/L70SFL_{160}^{\rm\scriptscriptstyle SF}/L_{70}^{\rm\scriptscriptstyle SF}, a proxy for TdustT_{\rm dust}, is strongly correlated with LIRSF/MdustL_{\rm IR}^{\rm\scriptscriptstyle SF}/M_{\rm dust} independently of redshift. We measure merger classification and galaxy size for a subsample, and there is no obvious correlation between these parameters and LIRSF/MdustL_{\rm IR}^{\rm \scriptscriptstyle SF}/M_{\rm dust} or L160SF/L70SFL_{160}^{\rm\scriptscriptstyle SF}/L_{70}^{\rm\scriptscriptstyle SF}. In dusty star forming galaxies, the change in LIRSF/MdustL_{\rm IR}^{\rm\scriptscriptstyle SF}/M_{\rm dust} can fully account for the observed colder dust temperatures, suggesting that any change in the spatial extent of the interstellar medium is a second order effect.Comment: Accepted for publication in ApJ. 21 pages, 11 figure

    A backward evolution model for infrared surveys: the role of AGN- and Color-L_TIR distributions

    Full text link
    Empirical "backward" galaxy evolution models for infrared bright galaxies are constrained using multi-band infrared surveys. We developed a new Monte-Carlo algorithm for this task, implementing luminosity dependent distribution functions for the galaxies' infrared spectral energy distributions (SEDs) and for the AGN contribution, allowing for evolution of these quantities. The adopted SEDs take into account the contributions of both starbursts and AGN to the infrared emission, for the first time in a coherent treatment rather than invoking separate AGN and star-forming populations. In the first part of the paper we consider the quantification of the AGN contribution for local universe galaxies, as a function of total infrared luminosity. It is made using a large sample of LIRGs and ULIRGs for which mid-infrared spectra are available in the Spitzer archive. In the second part we present the model. Our best-fit model adopts very strong luminosity evolution, L=L0(1+z)3.4L=L_0(1+z)^{3.4}, up to z=2.3z=2.3, and density evolution, ρ=ρ0(1+z)2\rho=\rho_0(1+z)^2, up to z=1z=1, for the population of infrared galaxies. At higher zz, the evolution rates drop as (1+z)1(1+z)^{-1} and (1+z)1.5(1+z)^{-1.5} respectively. To reproduce mid-infrared to submillimeter number counts and redshift distributions, it is necessary to introduce both an evolution in the AGN contribution and an evolution in the luminosity-temperature relation. Our models are in plausible agreement with current photometry-based estimates of the typical AGN contribution as a function of mid-infrared flux, and well placed to be compared to upcoming Spitzer spectroscopic results. As an example of future applications, we use our best-fitting model to make predictions for surveys with Herschel.Comment: Model available at: (http://www.physics.ubc.ca/~valiante/model) ApJ accepte

    Rest-UV Absorption Lines as Metallicity Estimator: the Metal Content of Star-Forming Galaxies at z~5

    Get PDF
    We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z~3. We then apply this relation to a sample of 224 galaxies at 3.5 = 4.8) in COSMOS, for which unique UV spectra from DEIMOS and accurate stellar masses from SPLASH are available. The average galaxy population at z~5 and log(M/Msun) > 9 is characterized by 0.3-0.4 dex (in units of 12+log(O/H)) lower metallicities than at z~2, but comparable to z~3.5. We find galaxies with weak/no Ly-alpha emission to have metallicities comparable to z~2 galaxies and therefore may represent an evolved sub-population of z~5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate (SFR) consistent with observations at z~2. The relation between stellar mass and metallicity (MZ relation) is similar to z~3.5, however, there are indications of it being slightly shallower, in particular for the young, Ly-alpha emitting galaxies. We show that, within a "bathtub" approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100-200 Myr. Due to this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.Comment: 20 pages, 13 figures, 4 tables; Submitted to Ap

    Classification of Extremely Red Objects in the COSMOS Field

    Full text link
    We present a study of the classification of z ~1 extremely red objects (EROs), using a combination of HST/ACS, Spitzer/IRAC, and ground-based images of the COSMOS field. Our sample includes about 5300 EROs with i-Ks>2.45 (AB, equivalently I-Ks=4 in Vega) and Ks<=21.1 (AB). For EROs in our sample, we compute, using the ACS F814W images, their concentration, asymmetry, as well as their Gini coefficient and the second moment of the brightest 20% of their light. Using those morphology parameters and the Spitzer/IRAC [3.6]-[8.0] color, the spectral energy distribution (SED) fitting method, we classify EROs into two classes: old galaxies (OGs) and young, dusty starburst galaxies (DGs). We found that the fraction of OGs and DGs in our sample is similar, about 48 percentages of EROs in our sample are OGs, and 52 percentages of them are DGs. To reduce the redundancy of these three different classification methods, we performed a principal component analysis on the measurements of EROs, and find that morphology parameters and SEDs are efficient in segregating OGs and DGs. The [3.6]-[8.0] color, which depends on reddening, redshift, and photometric accuracy, is difficult to separate EROs around the discriminating line between starburst and elliptical. We investigate the dependence of the fraction of EROs on their observational properties, and the results suggest that DGs become increasingly important at fainter magnitudes, redder colors, and higher redshifts.Comment: to be published in ApJ. 14 pages, 12 figure

    Detection of optical coronal emission from 10^6 K gas in the core of the Centaurus cluster

    Get PDF
    We report a detection (3.5x10^37 \pm 5.6x10^36 ergps) of the optical coronal emission line [Fe X]6374 and upper limits of four other coronal lines using high resolution VIMOS spectra centred on NGC 4696, the brightest cluster galaxy in the Centaurus cluster. Emission from these lines is indicative of gas at temperatures between 1 and 5 million K so traces the interstellar gas in NGC 4696. The rate of cooling derived from the upper limits is consistent with the cooling rate from X-ray observations (~10 solar masses per year) however we detect twice the luminosity expected for [Fe X]6374 emission, at 1 million K, our lowest temperature probe. We suggest this emission is due to the gas being heated rather than cooling out of the intracluster medium. We detect no coronal lines from [Ca XV], which are expected from the 5 million K gas seen near the centre in X-rays with Chandra. Calcium is however likely to be depleted from the gas phase onto dust grains in the central regions of NGC 4696.Comment: 11 pages, 13 figures, 2 tables, accepted for publication in MNRA

    Prognostic and predictive value of circulating tumor cells and CXCR4 expression as biomarkers for a CXCR4 peptide antagonist in combination with carboplatin-etoposide in small cell lung cancer: exploratory analysis of a phase II study.

    Get PDF
    Background Circulating tumor cells (CTCs) and chemokine (C-X-C motif) receptor 4 (CXCR4) expression in CTCs and tumor tissue were evaluated as prognostic or predictive markers of CXCR4 peptide antagonist LY2510924 plus carboplatin-etoposide (CE) versus CE in extensive-stage disease small cell lung cancer (ED-SCLC). Methods This exploratory analysis of a phase II study evaluated CXCR4 expression in baseline tumor tissue and peripheral blood CTCs and in post-treatment CTCs. Optimum cutoff values were determined for CTC counts and CXCR4 expression in tumors and CTCs as predictors of survival outcome. Kaplan-Meier estimates and hazard ratios were used to determine biomarker prognostic and predictive values. Results There was weak positive correlation at baseline between CXCR4 expression in tumor tissue and CTCs. Optimum cutoff values were H-score ≥ 210 for CXCR4+ tumor, ≥7% CTCs with CXCR4 expression (CXCR4+ CTCs), and ≥6 CTCs/7.5 mL blood. Baseline H-score for CXCR4+ tumor was not prognostic of progression-free survival (PFS) or overall survival (OS). Baseline CXCR4+ CTCs ≥7% was prognostic of shorter PFS. CTCs ≥6 at baseline and cycle 2, day 1 were prognostic of shorter PFS and OS. None of the biomarkers at their respective optimum cutoffs was predictive of treatment response of LY2510924 plus CE versus CE. Conclusions In patients with ED-SCLC, baseline CXCR4 expression in tumor tissue was not prognostic of survival or predictive of LY2510924 treatment response. Baseline CXCR4+ CTCs ≥7% was prognostic of shorter PFS. CTC count ≥6 at baseline and after 1 cycle of treatment were prognostic of shorter PFS and OS

    The radio properties of optically obscured Spitzer sources

    Full text link
    This paper analyses the radio properties of a subsample of optically obscured (R>25.5) galaxies observed at 24um by the Spitzer Space Telescope within the First Look Survey. 96 F[24um]>0.35 mJy objects out of 510 are found to have a radio counterpart at 1.4 GHz, 610 MHz or at both frequencies respectively down to ~40uJy and ~200uJy. IRAC photometry sets the majority of them in the redshift interval z [1-3] and allows for a broad distinction between AGN-dominated galaxies (~47% of the radio-identified sample) and systems powered by intense star-formation (~13%), the remaining objects being impossible to classify. The percentage of radio identifications is a strong function of 24um flux. The radio number counts at both radio frequencies suggest that the physical process(es) responsible for radio activity in these objects have a common origin regardless of whether the source shows mid-IR emission compatible with being an obscured AGN or a star-forming galaxy. We also find that both candidate AGN and star-forming systems follow (although with a large scatter) the relationship between 1.4 GHz and 24um fluxes reported by Appleton et al. (2004) which identifies sources undergoing intense star formation activity. On the other hand, the inferred radio spectral indices alpha indicate that a large fraction of objects in our sample (~60% of all galaxies with estimated alpha) may belong to the population of Ultra Steep Spectrum (USS) Sources, typically 'frustrated' radio-loud AGN. We interpret our findings as a strong indication for concurrent AGN and star-forming activity, whereby the 1.4 GHz flux is of thermal origin, while that at 610 GHz mainly stems from the nuclear source.Comment: 18 pages, 16 figures, to appear in MNRA
    corecore