3,146 research outputs found
Recommended from our members
Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1.
The fusion of inner mitochondrial membranes requires dynamin-like GTPases, Mgm1 in yeast and OPA1 in mammals, but how they mediate membrane fusion is poorly understood. Here, we determined the crystal structure of Saccharomyces cerevisiae short Mgm1 (s-Mgm1) in complex with GDP. It revealed an N-terminal GTPase (G) domain followed by two helix bundles (HB1 and HB2) and a unique C-terminal lipid-interacting stalk (LIS). Dimers can form through antiparallel HB interactions. Head-to-tail trimers are built by intermolecular interactions between the G domain and HB2-LIS. Biochemical and in vivo analyses support the idea that the assembly interfaces observed here are native and critical for Mgm1 function. We also found that s-Mgm1 interacts with negatively charged lipids via both the G domain and LIS. Based on these observations, we propose that membrane targeting via the G domain and LIS facilitates the in cis assembly of Mgm1, potentially generating a highly curved membrane tip to allow inner membrane fusion
Experimental study of needle-tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics.
A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy
The effect of fog on the probability density distribution of the ranging data of imaging laser radar
This paper outlines theoretically investigations of the probability density distribution (PDD) of ranging data for the imaging laser radar (ILR) system operating at a wavelength of 905 nm under the fog condition. Based on the physical model of the reflected laser pulses from a standard Lambertian target, a theoretical approximate model of PDD of the ranging data is developed under different fog concentrations, which offer improved precision target ranging and imaging. An experimental test bed for the ILR system is developed and its performance is evaluated using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that the measured results are in good agreement with both the accurate and approximate models within a given margin of error of less than 1%
Induction of ROS generation and NF-κB activation in MARC-145 cells by a novel porcine reproductive and respiratory syndrome virus in Southwest of China isolate
Each ORF gene nucleotide sequence of YN-2011
Simplified HIV Testing and Treatment in China: Analysis of Mortality Rates Before and After a Structural Intervention.
BackgroundMultistage stepwise HIV testing and treatment initiation procedures can result in lost opportunities to provide timely antiretroviral therapy (ART). Incomplete patient engagement along the continuum of HIV care translates into high levels of preventable mortality. We aimed to evaluate the ability of a simplified test and treat structural intervention to reduce mortality.Methods and findingsIn the "pre-intervention 2010" (from January 2010 to December 2010) and "pre-intervention 2011" (from January 2011 to December 2011) phases, patients who screened HIV-positive at health care facilities in Zhongshan and Pubei counties in Guangxi, China, followed the standard-of-care process. In the "post-intervention 2012" (from July 2012 to June 2013) and "post-intervention 2013" (from July 2013 to June 2014) phases, patients who screened HIV-positive at the same facilities were offered a simplified test and treat intervention, i.e., concurrent HIV confirmatory and CD4 testing and immediate initiation of ART, irrespective of CD4 count. Participants were followed for 6-18 mo until the end of their study phase period. Mortality rates in the pre-intervention and post-intervention phases were compared for all HIV cases and for treatment-eligible HIV cases. A total of 1,034 HIV-positive participants (281 and 339 in the two pre-intervention phases respectively, and 215 and 199 in the two post-intervention phases respectively) were enrolled. Following the structural intervention, receipt of baseline CD4 testing within 30 d of HIV confirmation increased from 67%/61% (pre-intervention 2010/pre-intervention 2011) to 98%/97% (post-intervention 2012/post-intervention 2013) (all p < 0.001 [i.e., for all comparisons between a pre- and post-intervention phase]), and the time from HIV confirmation to ART initiation decreased from 53 d (interquartile range [IQR] 27-141)/43 d (IQR 15-113) to 5 d (IQR 2-12)/5 d (IQR 2-13) (all p < 0.001). Initiation of ART increased from 27%/49% to 91%/89% among all cases (all p < 0.001) and from 39%/62% to 94%/90% among individuals with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). Mortality decreased from 27%/27% to 10%/10% for all cases (all p < 0.001) and from 40%/35% to 13%/13% for cases with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). The simplified test and treat intervention was significantly associated with decreased mortality rates compared to pre-intervention 2011 (adjusted hazard ratio [aHR] 0.385 [95% CI 0.239-0.620] and 0.380 [95% CI 0.233-0.618] for the two post-intervention phases, respectively, for all newly diagnosed HIV cases [both p < 0.001], and aHR 0.369 [95% CI 0.226-0.603] and 0.361 [95% CI 0.221-0.590] for newly diagnosed treatment-eligible HIV cases [both p < 0.001]). The unit cost of an additional patient receiving ART attributable to the intervention was US234.52.ConclusionsOur results demonstrate that the simplified HIV test and treat intervention promoted successful engagement in care and was associated with a 62% reduction in mortality. Our findings support the implementation of integrated HIV testing and immediate access to ART irrespective of CD4 count, in order to optimize the impact of ART
CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: CD133 is known to be a cancer stem cell (CSC) marker. However, recent studies have revealed that CD133 is not restricted to CSC but to be expressed not only in human normal tissues but also in some cancers and could serve as a prognostic factor for the patients. Nevertheless, the expression of CD133 in human cholangiocarcinoma (CC) is rare and our study is to detect the expression and explore the potential functions of CD133 in human CC. METHODS: Fifty-nine cases, comprised of 5 normal liver tissues and 54 consecutive CC specimens (21 well-differentiated, 12 moderately-differentiated and 21 poorly-differentiated), were included in the study. Immunohistochemical stainning with CD133 protein was carried out, and statistical analyses were performed. RESULTS: CD133 was found to express in all 5 normal livers and 40 out of 54 (74%) CC tissues with different subcellular localization. In the well, moderately and poorly differentiated cases, the numbers of CD133 positive cases were 19 (19 of 21, 90%), 10 (10 of 12, 83%) and 11 (11 of 21, 52%) respectively. Further statistical analyses indicated that the expression and different subcellular localization of CD133 were significantly correlated with the differentiation status of tumors (P = 0.004, P = 0.009). Among 23 patients followed up for survival, the median survival was 4 months for fourteen CD133 negative patients but 14 months for nine CD133 positive ones. In univariate survival analysis, CD133 negative expression correlated with poor prognosis while CD133 positive expression predicted a favorable outcome of CC patients (P = 0.001). CONCLUSIONS: Our study demonstrates that CD133 expression correlates with the differentiation of CC and indicates that CD133 is a potential indicator for differentiation and prognosis of human CC.Published versio
Changes in the Expression of miR-381 and miR-495 Are Inversely Associated with the Expression of the MDR1 Gene and Development of Multi-Drug Resistance
Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump to reduce the intracellular concentration of the drug(s). Thus, inhibiting P-gp expression might assist in overcoming MDR in cancer chemotherapy. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by adriamycin treatment. Two miRs, miR-381 and miR-495, that were strongly down-regulated in K562/ADM cells, are validated to target the 3'-UTR of the MDR1 gene. These miRs are located within a miR cluster located at chromosome region 14q32.31, and all miRs in this cluster appear to be down-regulated in K562/ADM cells. Functional analysis indicated that restoring expression of miR-381 or miR-495 in K562/ADM cells was correlated with reduced expression of the MDR1 gene and its protein product, P-gp, and increased drug uptake by the cells. Thus, we have demonstrated that changing the levels of certain miR species modulates the MDR phenotype in leukemia cells, and propose further exploration of the use of miR-based therapies to overcome MDR.The authors would like to declare that we received funding from a commercial source, i.e. Bioplatforms Australia. This does not alter
the authors' adherence to all PLOS ONE policies on sharing data and materials
A proteome-wide screen identifies valosin-containing protein as an essential regulator of podocyte endoplasmic reticulum stress
- …
