14,338 research outputs found
H ? filtering for stochastic singular fuzzy systems with time-varying delay
This paper considers the H? filtering problem
for stochastic singular fuzzy systems with timevarying
delay. We assume that the state and measurement
are corrupted by stochastic uncertain exogenous
disturbance and that the system dynamic is modeled
by Ito-type stochastic differential equations. Based on
an auxiliary vector and an integral inequality, a set of
delay-dependent sufficient conditions is established,
which ensures that the filtering error system is e?t -
weighted integral input-to-state stable in mean (iISSiM).
A fuzzy filter is designed such that the filtering
error system is impulse-free, e?t -weighted iISSiM and
the H? attenuation level from disturbance to estimation
error is belowa prescribed scalar.Aset of sufficient
conditions for the solvability of the H? filtering problem
is obtained in terms of a new type of Lyapunov
function and a set of linear matrix inequalities. Simulation
examples are provided to illustrate the effectiveness
of the proposed filtering approach developed in
this paper
Scaling behavior of online human activity
The rapid development of Internet technology enables human explore the web
and record the traces of online activities. From the analysis of these
large-scale data sets (i.e. traces), we can get insights about dynamic behavior
of human activity. In this letter, the scaling behavior and complexity of human
activity in the e-commerce, such as music, book, and movie rating, are
comprehensively investigated by using detrended fluctuation analysis technique
and multiscale entropy method. Firstly, the interevent time series of rating
behaviors of these three type medias show the similar scaling property with
exponents ranging from 0.53 to 0.58, which implies that the collective
behaviors of rating media follow a process embodying self-similarity and
long-range correlation. Meanwhile, by dividing the users into three groups
based their activities (i.e., rating per unit time), we find that the scaling
exponents of interevent time series in three groups are different. Hence, these
results suggest the stronger long-range correlations exist in these collective
behaviors. Furthermore, their information complexities vary from three groups.
To explain the differences of the collective behaviors restricted to three
groups, we study the dynamic behavior of human activity at individual level,
and find that the dynamic behaviors of a few users have extremely small scaling
exponents associating with long-range anticorrelations. By comparing with the
interevent time distributions of four representative users, we can find that
the bimodal distributions may bring the extraordinary scaling behaviors. These
results of analyzing the online human activity in the e-commerce may not only
provide insights to understand its dynamic behaviors but also be applied to
acquire the potential economic interest
125 GeV Higgs decay with lepton flavor violation in the SSM
Recently, the CMS and ATLAS Collaborations have reported direct searches for
the 125 GeV Higgs decay with lepton flavor violation, .
In this work, we analyze the signal of the lepton flavour violating (LFV) Higgs
decay in the from Supersymmetric Standard
Model (SSM) with slepton flavor mixing. Simultaneously, we consider the
constraints from the LFV decay , the muon
anomalous magnetic dipole moment and the lightest Higgs mass around 125 GeV.Comment: 26 pages, 4 figures, accepted for publication by Chinese Physics
- …
