882 research outputs found
Alpha-decay half-lives and Q_alpha values of superheavy nuclei
The alpha-decay half-lives of recently synthesized superheavy nuclei (SHN)
are investigated based on a unified fission model (UFM) where a new method to
calculate the assault frequency of alpha-emission is used. The excellent
agreement with the experimental data indicates the UFM is a useful tool to
investigate these alpha-decays. It is found that the half-lives become more and
more insensitive to the Q_alpha values as the atomic number increases on the
whole, which is favorable for us to predict the half-lives of SHN. In addition,
a formula is suggested to compute the Q_alpha values for the nuclei with Z > 92
and N > 140 with a good accuracy, according to which the long-lived SHN should
be neutron rich. With Q_alpha values from this formula as inputs, we predict
the half-lives of isotopes of Z = 117, which may be useful for experimental
identication in the future.Comment: 7 pages, 3 figure
Negative to Positive Crossover of Magnetoresistance in Layered WS2 with Ohmic Contact
The discovery of graphene has ignited intensive investigation on two
dimensional (2D) materials. Among them, transition metal dichalcogenide (TMDC),
a typical representative, attracts much attention due to the excellent
performance in field effect transistor (FET) related measurements and
applications. Particularly, when TMDC eventually reaches few-layer dimension, a
wide range of electronic and optical properties, in striking contrast to bulk
samples, are detected. In this Letter, we synthesized single crystalline WS2
nanoflakes by physical vapor deposition (PVD) method and carried out a series
of transport measurements of contact resistance and magnetoresistance. Focused
ion beam (FIB) technology was applied to deposit Pt electrodes on WS2 flakes.
Different from the electron beam lithography (EBL) fabricated electrodes,
FIB-deposited leads exhibited ohmic contact, resolving the dilemma of Schottky
barrier. Furthermore, a temperature-modulated negative-to-positive transition
of magnetoresistance (MR) associated with a crossover of carrier type at
similar temperature was demonstrated. Our work offers a pathway to optimize the
contact for TMDC and reveals the magnetoresistance characteristics of WS2
flakes, which may stimulate further studies on TMDC and corresponding potential
electronic and optoelectronic applications
The Mathematical Model of Image, Generated by Scanning Digital Radiography System
The mathematical model of image, generated by scanning digital radiography system is present. This model takes into account the X-ray energy spectrum transformation of the test object and a noise due to the quantum nature of radiation. The calculation results confirm the importance of fluctuations of the absorbed energy of the registered photon for the small size of the scintillation detectors
Application of dual energy method for non-destructive testing of materials designed to work in extreme conditions
The description of the dual energy method (DEM) for non-destructive testing (NDT) of materials and products is presented. It highlights the key factors that determine its accuracy and performance and shows the possibilities for its further improvement. The correlation between the quantum noise level and the DEM precision of the effective atomic number was found
Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers
Infrared quantum cutting involving Yb(3+) 950–1,000 nm ((2) F(5/2) → (2) F(7/2)) and Ho(3+) 1,007 nm ((5)S(2),(5)F(4) → (5)I(6)) as well as 1,180 nm ((5)I(6) → (5)I(8)) emissions is achieved in BaGdF(5): Ho(3+), Yb(3+) nanoparticles which are synthesized by a facile hydrothermal route. The mechanisms through first- and second-order energy transfers were analyzed by the dependence of Yb(3+) doping concentration on the visible and infrared emissions, decay lifetime curves of the (5) F(5) → (5)I(8), (5)S(2)/(5)F(4) → (5)I(8), and (5) F(3) → (5)I(8) of Ho(3+), in which a back energy transfer from Yb(3+) to Ho(3+) is first proposed to interpret the spectral characteristics. A modified calculation equation for quantum efficiency of Yb(3+)-Ho(3+) couple by exciting at 450 nm was presented according to the quantum cutting mechanism. Overall, the excellent luminescence properties of BaGdF(5): Ho(3+), Yb(3+) near-infrared quantum cutting nanoparticles could explore an interesting approach to maximize the performance of solar cells
- …
