2,213 research outputs found

    Orbital Order, Structural Transition and Superconductivity in Iron Pnictides

    Full text link
    We investigate the 16-band d-p model for iron pnictide superconductors in the presence of the electron-phonon coupling g with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening. Within the RPA, we obtain the ferro-orbital order below TQ which induces the tetragonal-orthorhombic structural transition at Ts = TQ, together with the stripe-type antiferromagnetic order below TN. Near the phase transitions, the system shows the s++ wave superconductivity due to the orbital fluctuation for a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation for a small g case with TQ < TN. The former case is consistent with the phase diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp

    Fundamental properties of Tsallis relative entropy

    Get PDF
    Fundamental properties for the Tsallis relative entropy in both classical and quantum systems are studied. As one of our main results, we give the parametric extension of the trace inequality between the quantum relative entropy and the minus of the trace of the relative operator entropy given by Hiai and Petz. The monotonicity of the quantum Tsallis relative entropy for the trace preserving completely positive linear map is also shown without the assumption that the density operators are invertible. The generalized Tsallis relative entropy is defined and its subadditivity is shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov inequality is also proven

    Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group

    Get PDF
    We propose a systematic method to generate a complete orthonormal basis set of multipole expansion for magnetic structures in arbitrary crystal structure. The key idea is the introduction of a virtual atomic cluster of a target crystal, on which we can clearly define the magnetic configurations corresponding to symmetry-adapted multipole moments. The magnetic configurations are then mapped onto the crystal so as to preserve the magnetic point group of the multipole moments, leading to the magnetic structures classified according to the irreducible representations of crystallographic point group. We apply the present scheme to pyrhochlore and hexagonal ABO3 crystal structures, and demonstrate that the multipole expansion is useful to investigate the macroscopic responses of antiferromagnets

    THz Wave Propagation on Strip Lines: Devices, Properties, and Applications

    Get PDF
    We report the propagation characteristics of THz pulses on micro-strip-lines and coplanar strip-lines, in which low permittivity polymer materials are used as the dielectric layer or the substrate. As a result of the low attenuation and small dispersion in the devices, the spectral width up to 3 THz can be achieved even after the 1 mm propagation. Spectroscopic characterizations of liquid or powder specimens are demonstrated using the devices. We also show a possibility of realizing a very low attenuation using a quadrupole mode in three strip coplanar lines on the polymer substrate

    Simple Real-Space Picture of Nodeless and Nodal s-wave Gap Functions in Iron Pnictide Superconductors

    Full text link
    We propose a simple way to parameterize the gap function in iron pnictides. The key idea is to use orbital representation, not band representation, and to assume real-space short-range pairing. Our parameterization reproduces fairly well the structure of gap function obtained in microscopic calculation. At the same time the present parameterization is simple enough to obtain an intuitive picture and to develop a phenomenological theory. We also discuss simplification of the treatment of the superconducting state.Comment: 4 page
    corecore