553 research outputs found

    Heating from Continuous Number Density Measurements in Optical Lattices

    Full text link
    We explore the effects of continuous number density measurement on atoms in an optical lattice. By integrating a master equation for quantum observables, we calculate how single particle correlations decay. We consider weakly- and strongly- interacting bosons and noninteracting fermions. Even in the Mott regime, such measurements destroy correlations and increase the average energy, as long as some hopping is allowed. We explore the role of spatial resolution, and find that the heating rate is proportional to the amount of information gained from such measurements.Comment: 10 pages, 4 figure

    Semantic Sort: A Supervised Approach to Personalized Semantic Relatedness

    Full text link
    We propose and study a novel supervised approach to learning statistical semantic relatedness models from subjectively annotated training examples. The proposed semantic model consists of parameterized co-occurrence statistics associated with textual units of a large background knowledge corpus. We present an efficient algorithm for learning such semantic models from a training sample of relatedness preferences. Our method is corpus independent and can essentially rely on any sufficiently large (unstructured) collection of coherent texts. Moreover, the approach facilitates the fitting of semantic models for specific users or groups of users. We present the results of extensive range of experiments from small to large scale, indicating that the proposed method is effective and competitive with the state-of-the-art.Comment: 37 pages, 8 figures A short version of this paper was already published at ECML/PKDD 201

    Dispersion and wavefunction symmetry in cold atoms experiencing artificial gauge fields

    Full text link
    We analyze the single particle quantum mechanics of an atom whose dispersion is modified by spin orbit coupling to Raman lasers. We calculate how the novel dispersion leads to unusual single particle physics. We focus on the symmetry of the ground state wavefunction in different potentials.Comment: 5 pages, 7 figure

    Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schr\"{o}dinger equation

    Full text link
    We consider splitting and stabilization of second-order solitons (2-soliton breathers) in a model based on the nonlinear Schr\"{o}dinger equation (NLSE), which includes a small quintic term, and weak resonant nonlinearity management (NLM), i.e., time-periodic modulation of the cubic coefficient, at the frequency close to that of shape oscillations of the 2-soliton. The model applies to the light propagation in media with cubic-quintic optical nonlinearities and periodic alternation of linear loss and gain, and to BEC, with the self-focusing quintic term accounting for the weak deviation of the dynamics from one-dimensionality, while the NLM can be induced by means of the Feshbach resonance. We propose an explanation to the effect of the resonant splitting of the 2-soliton under the action of the NLM. Then, using systematic simulations and an analytical approach, we conclude that the weak quintic nonlinearity with the self-focusing sign stabilizes the 2-soliton, while the self-defocusing quintic nonlinearity accelerates its splitting. It is also shown that the quintic term with the self-defocusing/focusing sign makes the resonant response of the 2-soliton to the NLM essentially broader, in terms of the frequency.Comment: 16 pages, 6 figure
    corecore