2,197 research outputs found

    Observation of spin-orbit magnetoresistance in metallic thin films on magnetic insulators

    Full text link
    A magnetoresistance effect induced by the Rashba spin-orbit interaction was predicted, but not yet observed, in bilayers consisting of normal metal and ferromagnetic insulator. Here, we present an experimental observation of this new type of spin-orbit magnetoresistance (SOMR) effect in a bilayer structure Cu[Pt]/Y3Fe5O12 (YIG), where the Cu/YIG interface is decorated with nanosize Pt islands. This new MR is apparently not caused by the bulk spin-orbit interaction because of the negligible spin-orbit interaction in Cu and the discontinuity of the Pt islands. This SOMR disappears when the Pt islands are absent or located away from the Cu/YIG interface, therefore we can unambiguously ascribe it to the Rashba spin-orbit interaction at the interface enhanced by the Pt decoration. The numerical Boltzmann simulations are consistent with the experimental SOMR results in the angular dependence of magnetic field and the Cu thickness dependence. Our finding demonstrates the realization of the spin manipulation by interface engineering.Comment: 12 pages, 4 figures, 14 pages in supplementary. To appear on Science Advance

    Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes

    Get PDF
    Thioredoxin 1 (Trx1) is a 12-kDa oxidoreductase that catalyzes thiol-disulfide exchange reactions to reduce proteins with disulfide bonds. As such, Trx1 helps protect the heart against stresses, such as ischemia and pressure overload. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, metabolism, and survival. We have shown previously that mTOR activity is increased in response to myocardial ischemia-reperfusion injury. However, whether Trx1 interacts with mTOR to preserve heart function remains unknown. Using a substrate-trapping mutant of Trx1 (Trx1C35S), we show here that mTOR is a direct interacting partner of Trx1 in the heart. In response to H2O2 treatment in cardiomyocytes, mTOR exhibited a high molecular weight shift in non-reducing SDS-PAGE in a 2-mercaptoethanol-sensitive manner, suggesting that mTOR is oxidized and forms disulfide bonds with itself or other proteins. The mTOR oxidation was accompanied by reduced phosphorylation of endogenous substrates, such as S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1) in cardiomyocytes. Immune complex kinase assays disclosed that H2O2 treatment diminished mTOR kinase activity, indicating that mTOR is inhibited by oxidation. Of note, Trx1 overexpression attenuated both H2O2-mediated mTOR oxidation and inhibition, whereas Trx1 knockdown increased mTOR oxidation and inhibition. Moreover, Trx1 normalized H2O2-induced down-regulation of metabolic genes and stimulation of cell death, and an mTOR inhibitor abolished Trx1-mediated rescue of gene expression. H2O2-induced oxidation and inhibition of mTOR were attenuated when Cys-1483 of mTOR was mutated to phenylalanine. These results suggest that Trx1 protects cardiomyocytes against stress by reducing mTOR at Cys-1483, thereby preserving the activity of mTOR and inhibiting cell death

    Intracellular Detection of ATP Using an Aptamer Beacon Covalently Linked to Graphene Oxide Resisting Nonspecific Probe Displacement

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Liu, Z., Chen, S., Liu, B., Wu, J., Zhou, Y., He, L., … Liu, J. (2014). Intracellular Detection of ATP Using an Aptamer Beacon Covalently Linked to Graphene Oxide Resisting Nonspecific Probe Displacement. Analytical Chemistry, 86(24), 12229–12235. https://doi.org/10.1021/ac503358mFluorescent aptamer probes physisorbed on graphene oxide (GO) have recently emerged as a useful sensing platform. A signal is generated by analyte-induced probe desorption. To address nonspecific probe displacement and the false positive signal, we herein report a covalently linked aptamer probe for adenosine triphosphate (ATP) detection. A fluorophore and amino dual modified aptamer was linked to the carboxyl group on GO with a coupling efficiency of ∼50%. The linearity, specificity, stability, and regeneration of the covalent sensor were systematically studied and compared to the physisorbed probe. Both sensors have similar sensitivity, but the covalent one is more resistant to nonspecific probe displacement by proteins. The covalent sensor has a dynamic range from 0.125 to 2 mM ATP in buffer at room temperature and is resistance to DNase I. Intracellular ATP imaging was demonstrated using the covalent sensor, which generated a higher fluorescence signal than the physisorbed sensor. After the cells were stimulated with 5 mM Ca2+ for ATP production, the intracellular signal enhanced by 31.8%. This work highlights the advantages of covalent aptamer sensors using GO as both a quencher and a delivery vehicle for intracellular metabolite detection.National Natural Science Foundation of China || Grant No. 81301258, 21301195 Hunan Provincial Natural Science Foundation of China || Grant No. 13JJ4029 Specialized Research Fund for the Doctoral Program of Higher Education of China || Grant No. 20130162120078 Postdoctoral Science Foundation of Central South University and China || Grant No. 124896 China Postdoctoral Science Foundation || Grant No. 2013M540644 International Postdoctoral Exchange Fellowship Program ||Grant No. 20140014 Shenghua Scholar Foundation || Natural Sciences and Engineering Research Council |

    Galactic structure studies with BATC star counts

    Full text link
    We report the first results of star counts carried out with the National Astronomical Observatories (NAOC) 60/90 cm Schmidt Telescope in 15 intermediate-band filters from 3000 to 10000 {\AA} in the BATC survey. We analyze a sample of over 1400 main sequence stars (1414\leV21\le21), which lie in the field with central coordinates R.A.=09h53m13s.3009^h53^m13^s.30 and DEC=474900.0^\circ49^{\prime}00^{\prime\prime}.0 (J2000). The field of view is 0.95 deg2^{2}, and the spatial scale was 1\arcsec.67. In our model, the distribution of stars perpendicular to the plane of the Galaxy is given by two exponential disks (thin disk plus thick disk) and a de Vaucouleurs halo. Based on star counts, we derive the scale heights of the thin disk to be 32015+14320^{+14}_{-15} pc and of the thick disk to be 64032+30640^{+30}_{-32} pc, respectively, with a local density of 7.0±17.0\pm1% of the thin disk. We find that the observed counts support an axial ratio of c/a0.6c/a\le0.6 for a de Vaucouleurs r1/4r^{1/4} law, implying a more flattened halo. We also derive the stellar luminosity function (SLF) for the thin disk, and it partly agrees with the Hipparcos luminosity function.Comment: 17pages,9 figure

    Tunable and absolute electromagnetic vacuum in two-dimensional photonic-band-gap Based on multiferroic materials

    No full text
    When multiferroic terbium manganite (TbMnO₃) crystal cylinders are periodically arranged in a square lattice, the resulting two-dimensional (2D) system exhibits photonic band gaps (PBGs). The absolute PBG originating from the Mie resonance is modulated from closed to open by applying an external static magnetic field, which is attributed to the electromagnon depression of the dielectric constant by the rearrangement of antiferromagnetic order. Tunable electromagnetic band structure may be realized by controlling the magnetic transition of manganese spins in TbMnO₃.The authors are grateful for financial support from the Outstanding Foundation of NJUST, the NJUST Research Funding (No. 2010ZDJH06), the National Natural Science Foundation of China (Grant Nos. 11004106, 50672034, 50832002, and 50901042), and the State Key Program for Basic Research of China (Grant Nos. 2009CB623303 and 2009CB929501)

    Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films.

    Get PDF
    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material

    Stochastic homogenization of nonlinear evolution equations with space-time nonlocality

    Full text link
    In this paper we consider the homogenization problem of nonlinear evolution equations with space-time non-locality, the problems are given by Beltritti and Rossi [JMAA, 2017, 455: 1470-1504]. When the integral kernel J(x,t;y,s)J(x,t;y,s) is re-scaled in a suitable way and the oscillation coefficient ν(x,t;y,s)\nu(x,t;y,s) possesses periodic and stationary structure, we show that the solutions uε(x,t)u^{\varepsilon}(x,t) to the perturbed equations converge to u0(x,t)u_{0}(x,t), the solution of corresponding local nonlinear parabolic equation as scale parameter ε0+\varepsilon\rightarrow 0^{+}. Then for the nonlocal linear index p=2p=2 we give the convergence rate such that uεu0L2(Rd×(0,T))Cε||u^\varepsilon -u_{0}||_{_{L^{2}(\mathbb{R}^{d}\times(0,T))}}\leq C\varepsilon. Furthermore, we obtain that the normalized difference 1ε[uε(x,t)u0(x,t)]χ(xε,tε2)xu0(x,t)\frac{1}{\varepsilon}[u^{\varepsilon}(x,t)-u_{0}(x,t)]-\chi(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^{2}}) \nabla_{x}u_{0}(x,t) converges to a solution of an SPDE with additive noise and constant coefficients. Finally, we give some numerical formats for solving non-local space-time homogenization.Comment: 24 pages, 1 figur
    corecore