73 research outputs found

    Study on Spinnability of PP/PU Blends and Preparation of PP/PU Bi-component Melt Blown Nonwovens

    Get PDF
    Melt blown polymer blends offers a good way to combine two polymers in the same fiber generating nonwovens with new and novel properties. In this study, polypropylene (PP) and polyurethane (PU) were blended to prepare PP/PU bicomponent melt blown nonwovens. The spinnability of PP/PU composites was investigated and PP/PU bi-component nonwovens with compositions of 95/5, 90/10, 80/20 and 70/30 were prepared by using the melt blowing technique. The melt blown fibers exhibited a ‘sea-island’ structure with PP as the continuous phase and PU as the dispersed phase. When the content of PU in the blend was above 40 %, PP/PU melt blown nonwovens could not be produced due to fiber breaking. For PP/PU (90/10) nonwovens, it was found that the average fiber diameter decreased with increasing die to collector (DCD) and elevated hot air pressure

    Expression of Wnt and Notch signaling pathways in inflammatory bowel disease treated with mesenchymal stem cell transplantation: evaluation in a rat model

    Get PDF
    INTRODUCTION: The purpose of this study was to investigate the expression of Wnt and Notch signaling pathway-related genes in inflammatory bowel disease (IBD) treated with mesenchymal stem cell transplantation (MSCT). METHODS: TNBS (2,4,6-trinitrobenzene sulfonic acid) was used to establish IBD in a rat model. Mesenchymal stem cells (MSCs) were transplanted via tail vein transfusion. Saline water was used in a control group. The expression of Wnt and Notch main signaling molecules was screened by gene chips and verified by quantitative reverse transcription-polymerase chain reaction in the IBD rat model on day 14 and day 28 after transplantation. RESULTS: The IBD rat models were successfully established and MSCs were transplanted into those models. Genome-wide expression profile chips identified a total of 388 differentially expressive genes, of which 191 were upregulated and 197 were downregulated in the MSC-transplanted group in comparison with the IBD control group. Real-time quantitative polymerase chain reaction results showed that the level of Olfm4 mRNA expression in the IBD group (2.54±0.20) was significantly increased compared with the MSCT group (1.39±0.54) and the normal group (1.62±0.25) (P <0.05). The Wnt3a mRNA was more highly expressed in IBD rats (2.92±0.94) and decreased in MSCT rats (0.17±0.63, P <0.05). The expression of GSK-3β mRNA was decreased in the setting of inflammation (0.65±0.04 versus 1.00±0.01 in normal group, P <0.05) but returned to normal levels after MSCT (0.81±0.17). The expression of β-catenin was observed to increase in IBD tissues (1.76±0.44) compared with normal tissues (1.00±0.01, P <0.05), but no difference was found in the MSCT group (1.12±0.36). Wnt11 declined at 14 days and returned to normal levels at 28 days in the IBD group; in comparison, a significantly lower expression was found in MSCT rats. There were no differences in the expression of Fzd3, c-myc, TCF4, and Wnt5a in inflammation, but all of those genes declined after MSCT treatment. CONCLUSIONS: The canonical Wnt and Notch signaling pathways are activated in IBD and may be suppressed by stem cell transplantation to differentiate into intestinal epithelium after MSCT. Moreover, the non-canonical Wnt signaling may be inhibited by canonical Wnt signaling in the setting of inflammation and may also be suppressed by MSCT

    6-Methyl-2,4-diphenylquinoline

    Get PDF
    The molecules of the title compound, C22H17N, are linked by weak interactions, among which the most prominent are C&#8212;H...&#960; interactions. The dihedral angles between the phenyl rings and the quinoline ring system are 43.3&#8197;(3) and 21.4&#8197;(3)&#176;. The title product resulted from a three-component reaction of benzaldehyde, 1-ethynylbenzene and p-toluidine via C&#8212;H activation of 1-ethynylbenzene catalyzed by CuI in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate
    corecore