15,357 research outputs found
Regulation of B cell fate by chronic activity of the IgE B cell receptor.
IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses
Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum
Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions
New Mechanics of Traumatic Brain Injury
The prediction and prevention of traumatic brain injury is a very important
aspect of preventive medical science. This paper proposes a new coupled
loading-rate hypothesis for the traumatic brain injury (TBI), which states that
the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an
impulsive loading that strikes the head in several coupled degrees-of-freedom
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions
within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt
dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid
discontinuous deformations: translational dislocations and rotational
disclinations. Brain's dislocations and disclinations, caused by the
SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum
brain model.
Keywords: Traumatic brain injuries, coupled loading-rate hypothesis,
Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and
disclinationsComment: 18 pages, 1 figure, Late
Blind spectra decomposition of MRSI of the brain with tumor by sparse component analysis
Magnetic Resonance Spectroscopy Imaging (MRSI) is suitable for analyzing brain tumor metabolites in vivo. Several tissue types may exist in the tumor
lesion area, and thus the measured MR spectra are a linear superposition of the constituent spectra of each of the different tissues. In this abstract we describe
a novel approach, based on sparse component analysis, to recover the constituent spectra from the measured mixtures. The method is applied to experimental
MRSI data of a brain with tumor lesion, and promising result is obtained. Compared to the existing BSD and cNMF approaches, this method is relatively
simple and very fast.published_or_final_versio
Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery
The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex
Observation of the Fractional Quantum Hall Effect in Graphene
When electrons are confined in two dimensions and subjected to strong
magnetic fields, the Coulomb interactions between them become dominant and can
lead to novel states of matter such as fractional quantum Hall liquids. In
these liquids electrons linked to magnetic flux quanta form complex composite
quasipartices, which are manifested in the quantization of the Hall
conductivity as rational fractions of the conductance quantum. The recent
experimental discovery of an anomalous integer quantum Hall effect in graphene
has opened up a new avenue in the study of correlated 2D electronic systems, in
which the interacting electron wavefunctions are those of massless chiral
fermions. However, due to the prevailing disorder, graphene has thus far
exhibited only weak signatures of correlated electron phenomena, despite
concerted experimental efforts and intense theoretical interest. Here, we
report the observation of the fractional quantum Hall effect in ultraclean
suspended graphene, supporting the existence of strongly correlated electron
states in the presence of a magnetic field. In addition, at low carrier density
graphene becomes an insulator with an energy gap tunable by magnetic field.
These newly discovered quantum states offer the opportunity to study a new
state of matter of strongly correlated Dirac fermions in the presence of large
magnetic fields
Gate-Controlled Ionization and Screening of Cobalt Adatoms on a Graphene Surface
We describe scanning tunneling spectroscopy (STS) measurements performed on
individual cobalt (Co) atoms deposited onto backgated graphene devices. We find
that Co adatoms on graphene can be ionized by either the application of a
global backgate voltage or by the application of a local electric field from a
scanning tunneling microscope (STM) tip. Large screening clouds are observed to
form around Co adatoms ionized in this way, and we observe that some intrinsic
graphene defects display a similar behavior. Our results provide new insight
into charged impurity scattering in graphene, as well as the possibility of
using graphene devices as chemical sensors.Comment: 19 pages, 4 figure
Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice
We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2-/NO3- data from "middle-aged" (6-8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for "young" (2-3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging. © 2013 Namas et al
Thermal stress induces glycolytic beige fat formation via a myogenic state.
Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival
- …
