3,853 research outputs found
Reduction in N2 amplitude in response to deviant drug-related stimuli during a two-choice oddball task in long-term heroin abstainers
Rationale: Chronic heroin use can cause deficits in response inhibition, leading to a loss of control over drug use, particularly in the context of drug-related cues. Unfortunately, heightened incentive salience and motivational bias in response to drug-related cues may exist following abstinence from heroin use.
Objectives: The present study aimed to examine the effect of drug-related cues on response inhibition in long-term heroin abstainers.
Methods: Sixteen long-term (8–24 months) male heroin abstainers and 16 male healthy controls completed a modified two-choice oddball paradigm, in which a neutral “chair” picture served as frequent standard stimuli; the neutral and drug-related pictures served as infrequent deviant stimuli of different conditions respectively. Event-related potentials were compared across groups and conditions.
Results: Our results showed that heroin abstainers exhibited smaller N2d amplitude (deviant minus standard) in the drug cue condition compared to the neutral condition, due to smaller drug-cue deviant-N2 amplitude compared to neutral deviant-N2. Moreover, heroin abstainers had smaller N2d amplitude compared with the healthy controls in the drug cue condition, due to the heroin abstainers having reduced deviant-N2 amplitude compared to standard-N2 in the drug cue condition, which reversed in the healthy controls.
Conclusions: Our findings suggested that heroin addicts still show response inhibition deficits specifically for drug-related cues after longer-term abstinence. The inhibition-related N2 modulation for drug-related could be used as a novel electrophysiological index with clinical implications for assessing the risk of relapse and treatment outcome for heroin users
Effects of annealing on the electrical properties of Fe-doped InP
The electrical properties of Fe-doped semi-insulating (SI) InP were investigated before and after annealing. The annealing conditions were controlled by changing either the temperature or duration. Correlation between the change of electrical parameters with the change of defect concentration at different annealing stage was observed. The defects and the change of the concentrations in Fe-doped SI InP were detected by room-temperature photocurrent spectroscopy.published_or_final_versio
Electromagnetic device design based on RBF models and two new sequential optimization strategies
We present two new strategies for sequential optimization method (SOM) to deal with the optimization design problems of electromagnetic devices. One is a new space reduction strategy; the other is model selection strategy. Meanwhile, radial basis function (RBF) and compactly supported RBF models are investigated to extend the applied model types for SOM. Thereafter, Monte Carlo method is employed to demonstrate the efficiency and superiority of the new space reduction strategy. Five commonly used approximate models are considered for the discussion of model selection strategy. Furthermore, by two TEAM benchmark examples, we can see that SOM with the proposed new strategies and models can significantly speed the optimization design process, and the efficiency of SOM depends a little on the types of approximate models. © 2006 IEEE
Electrical and FT-IR measurements of undoped N-type INP materials grown from various stoichiometric melts
P-rich, In-rich and Stoichiometric undoped InP melts have been synthesed by phosphorus in-situ injection method. InP crystal ingots have been grown from these melts by Liquid Encapsulated Czochralski (LEC). Samples from these ingots grown from various Stoichiometric melts have been characterized by Hall Effect and Fourier Transform Infrared (FT-IR) spectroscopy measurements respectively. The Hall Effect measurement results indicate that the net carrier concentration of P-inch undoped InP is higher than that of In-rich and Stoichiometric undoped InP materials. FT-IR spectroscopy measurements reveal that there are intensive absorption peaks which have been proved to be hydrogen related indium vacancy complex V InH 4. By comparing FT-IR spectra, it is found that P-rich InP material has the most intensive absorption peak of V InH 4, while In-rich InP material has the weakest absorption peak.published_or_final_versio
Emerging Artificial Societies Through Learning
The NewTies project is implementing a simulation in which societies of agents are expected to de-velop autonomously as a result of individual, population and social learning. These societies are expected to be able to solve environmental challenges by acting collectively. The challenges are in-tended to be analogous to those faced by early, simple, small-scale human societies. This report on work in progress outlines the major features of the system as it is currently conceived within the project, including the design of the agents, the environment, the mechanism for the evolution of language and the peer-to-peer infrastructure on which the simulation runs.Artificial Societies, Evolution of Language, Decision Trees, Peer-To-Peer Networks, Social Learning
Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting
Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices
Formation of P In defect in annealed liquid-encapsulated Czochralski InP
Fourier transform infrared spectroscopy measurements have been carried out on liquid-encapsulated Czochralski-grown undoped InP wafers, which reproducibly become semi-insulating upon annealing in an ambient of phosphorus at 800-900°C. The measurements reveal a high concentration of hydrogen complexes in the form V InH 4 existing in the material before annealing in agreement with recent experimental studies. It is argued that the dominant and essential process producing the semi-insulating behavior is the compensation produced by an EL 2-like deep donor phosphorus antisite defect, which is formed by the dissociation of the hydrogen complexes during the process of annealing. The deep donor compensates acceptors, the majority of which are shallow residual acceptor impurities and deep hydrogen associated V In and isolated V In levels, produced at the first stage of the dissociation of the V InH 4 complex. The high concentration of indium vacancies produced by the dissociation are the precursor of the EL 2-like phosphorus antisite. These results show the importance of hydrogen on the electrical properties of InP and indicate that this largely results from low formation energy of the complex V InH 4 in comparison with that of an isolated V In. © 1998 American Institute of Physics.published_or_final_versio
Compensation defects in annealed undoped liquid encapsulated Czochralski InP
As-grown undoped n-type semiconducting and annealed undoped semi-insulating (SI) liquid encapsulated Czochralski (LEC) InP has been studied by temperature dependent Hall measurement, photoluminescence spectroscopy, infrared absorption, and photocurrent spectroscopy. P-type conduction SI InP can frequently be obtained by annealing undoped LEC InP. This is caused by a high concentration of thermally induced native acceptor defects. In some cases, it can be shown that the thermally induced n-type SI property of undoped LEC InP is caused by a midgap donor compensating for the net shallow acceptors. The midgap donor is proposed to be a phosphorus antisite related defect. Traps in annealed SI InP have been detected by photocurrent spectroscopy and have been compared with reported results. The mechanisms of defect formation are discussed. © 1999 American Institute of Physics.published_or_final_versio
Compensation ratio-dependent concentration of a V InH 4 complex in n-type liquid encapsulated Czochralski InP
The concentration of hydrogen-indium vacancy complex V InH 4 in liquid encapsulated Czochralski undoped and Fe-doped n-type InP has been studied by low-temperature infrared absorption spectroscopy. The V InH 4 complex is found to be a dominant intrinsic shallow donor defect with concentrations up to ∼10 16 cm -3 in as-grown liquid encapsulated Czochralski InP. The concentration of the V InH 4 complex is found to increase with the compensation ratio in good agreement with the proposed defect formation model of Walukiewicz [W. Walukiewicz, Phys. Rev. B 37, 4760 (1998); Appl. Phys. Lett. 54, 2094 (1989)], which predicts a Fermi-level-dependent concentration of amphoteric defects. © 1998 American Institute of Physics.published_or_final_versio
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
- …
