702 research outputs found
Explicit and Exact Solutions to a Kolmogorov-Petrovskii-Piskunov Equation
Some explicit traveling wave solutions to a Kolmogorov-Petrovskii-Piskunov
equation are presented through two ans\"atze. By a Cole-Hopf transformation,
this Kolmogorov-Petrovskii-Piskunov equation is also written as a bilinear
equation and further two solutions to describe nonlinear interaction of
traveling waves are generated. B\"acklund transformations of the linear form
and some special cases are considered.Comment: 14pages, Latex, to appear in Intern. J. Nonlinear Mechanics, the
original latex file is not complet
Representation of tropical deep convection in atmospheric models - Part 1 : Meteorology and comparison with satellite observations
Published under Creative Commons Licence 3.0. Original article can be found at : http://www.atmospheric-chemistry-and-physics.net/ "The author's copyright for this publication is transferred to University of Hertfordshire".Fast convective transport in the tropics can efficiently redistribute water vapour and pollutants up to the upper troposphere. In this study we compare tropical convection characteristics for the year 2005 in a range of atmospheric models, including numerical weather prediction (NWP) models, chemistry transport models (CTMs), and chemistry-climate models (CCMs). The model runs have been performed within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The characteristics of tropical convection, such as seasonal cycle, land/sea contrast and vertical extent, are analysed using satellite observations as a benchmark for model simulations. The observational datasets used in this work comprise precipitation rates, outgoing longwave radiation, cloud-top pressure, and water vapour from a number of independent sources, including ERA-Interim analyses. Most models are generally able to reproduce the seasonal cycle and strength of precipitation for continental regions but show larger discrepancies with observations for the Maritime Continent region. The frequency distribution of high clouds from models and observations is calculated using highly temporally-resolved (up to 3-hourly) cloud top data. The percentage of clouds above 15 km varies significantly between the models. Vertical profiles of water vapour in the upper troposphere-lower stratosphere (UTLS) show large differences between the models which can only be partly attributed to temperature differences. If a convective plume reaches above the level of zero net radiative heating, which is estimated to be ~15 km in the tropics, the air detrained from it can be transported upwards by radiative heating into the lower stratosphere. In this context, we discuss the role of tropical convection as a precursor for the transport of short-lived species into the lower stratosphere.Peer reviewe
Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities
Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets
Efficient scheme for one-way quantum computing in thermal cavities
We propose a practical scheme for one-way quantum computing based on
efficient generation of 2D cluster state in thermal cavities. We achieve a
controlled-phase gate that is neither sensitive to cavity decay nor to thermal
field by adding a strong classical field to the two-level atoms. We show that a
2D cluster state can be generated directly by making every two atoms collide in
an array of cavities, with numerically calculated parameters and appropriate
operation sequence that can be easily achieved in practical Cavity QED
experiments. Based on a generated cluster state in Box configuration,
we then implement Grover's search algorithm for four database elements in a
very simple way as an example of one-way quantum computing.Comment: 6 pages, 3 figure
Non-Markovian dynamics in a spin star system: The failure of thermalization
In most cases, a small system weakly interacting with a thermal bath will
finally reach the thermal state with the temperature of the bath. We show that
this intuitive picture is not always true by a spin star model where non-Markov
effect predominates in the whole dynamical process. The spin star system
consists a central spin homogeneously interacting with an ensemble of identical
noninteracting spins. We find that the correlation time of the bath is
infinite, which implies that the bath has a perfect memory, and that the
dynamical evolution of the central spin must be non- Markovian. A direct
consequence is that the final state of the central spin is not the thermal
state equilibrium with the bath, but a steady state which depends on its
initial state.Comment: 8 page
Leading and higher twists in the proton polarized structure function at large Bjorken x
A phenomenological parameterization of the proton polarized structure
function has been developed for x > 0.02 using deep inelastic data up to ~ 50
(GeV/c)**2 as well as available experimental results on both photo- and
electro-production of proton resonances. According to the new parameterization
the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a
zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order
polarized Nachtmann moments have been estimated and their Q**2-behavior has
been investigated in terms of leading and higher twists for Q**2 > 1
(GeV/c)**2. The leading twist has been treated at NLO in the strong coupling
constant and the effects of higher orders of the perturbative series have been
estimated using soft-gluon resummation techniques. In case of the first moment
higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and
the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/-
0.09. In case of higher order moments, which are sensitive to the large-x
region, higher-twist effects are significantly reduced by the introduction of
soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2
at variance with the case of the unpolarized transverse structure function of
the proton. Our finding suggests that spin-dependent correlations among partons
may have more impact than spin-independent ones. As a byproduct, it is also
shown that the Bloom-Gilman local duality is strongly violated in the region of
polarized electroproduction of the Delta(1232) resonance.Comment: revised version to appear in Phys. Rev. D; extended discussion on the
generalized DHG sum rul
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons
Using data collected with the BESII detector at storage ring
Beijing Electron Positron Collider, the measurements of relative branching
fractions for seven Cabibbo suppressed hadronic weak decays ,
, and , , and are presented.Comment: 11 pages, 5 figure
Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors in a quasiperiodically forced map : Mechanisms and their characterizations
A simple quasiperiodically forced one-dimensional cubic map is shown to
exhibit very many types of routes to chaos via strange nonchaotic attractors
(SNAs) with reference to a two-parameter space. The routes include
transitions to chaos via SNAs from both one frequency torus and period doubled
torus. In the former case, we identify the fractalization and type I
intermittency routes. In the latter case, we point out that atleast four
distinct routes through which the truncation of torus doubling bifurcation and
the birth of SNAs take place in this model. In particular, the formation of
SNAs through Heagy-Hammel, fractalization and type--III intermittent mechanisms
are described. In addition, it has been found that in this system there are
some regions in the parameter space where a novel dynamics involving a sudden
expansion of the attractor which tames the growth of period-doubling
bifurcation takes place, giving birth to SNA. The SNAs created through
different mechanisms are characterized by the behaviour of the Lyapunov
exponents and their variance, by the estimation of phase sensitivity exponent
as well as through the distribution of finite-time Lyapunov exponents.Comment: 27 pages, RevTeX 4, 16 EPS figures. Phys. Rev. E (2001) to appea
Search for the Lepton Flavor Violation Processes and
The lepton flavor violation processes and are
searched for using a sample of 5.8 events collected with
the BESII detector. Zero and one candidate events, consistent with the
estimated background, are observed in and
decays, respectively. Upper limits on the branching ratios are determined to be
and at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure
- …
