1,305 research outputs found
Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method.
Mn-doped TiO2 micro/nanostructure porous film was prepared by anodizing a Ti-Mn alloy. The film annealed at 300 °C yields the highest areal capacitance of 1451.3 mF/cm(2) at a current density of 3 mA/cm(2) when used as a high-performance supercapacitor electrode. Areal capacitance retention is 63.7% when the current density increases from 3 to 20 mA/cm(2), and the capacitance retention is 88.1% after 5,000 cycles. The superior areal capacitance of the porous film is derived from the brush-like metal substrate, which could greatly increase the contact area, improve the charge transport ability at the oxide layer/metal substrate interface, and thereby significantly enhance the electrochemical activities toward high performance energy storage. Additionally, the effects of manganese content and specific surface area of the porous film on the supercapacitive performance were also investigated in this work
散料在锥仓中的静压接触状态与影响因素
Finite element models, which employ the Drucker-Prager yield criterion, have been developed to simulate the static contact statuses between conical silos and granular materials in 3 forms: the near contact, the sliding contact and the sticking contact. Contact conditions are established when 2 separated surfaces touch at normal direction while maintaining tangential relative movement. In general physical meaning, the surfaces in contact status have the following characteristics: 1) No penetration between each other; 2) The normal pressure and the tangent friction force may be transferred during contact; 3) Generally the normal pulling force cannot be transferred when surface separation occurs. Due to the symmetric property of conical structures, simplified two-dimensional contacting simulations are carried out in this paper, nonlinear finite element software ANSYS is used and the contacting surfaces between granular materials and conical silos are defined with rigid-to-flexible surface-to-surface contact pair. The target surfaces of conical silos are modeled with TARGE169 element and the contact surfaces of granular materials are modeled with CONTA171 element. During finite element analysis, conical silos and granular materials are meshed with two-dimensional solid element, PLANE42. The static contact statuses are investigated with conical silos containing different granular materials. The silo geometries vary at a dip angle of 20°, 33.7° and 45°. Sunflower seeds, corn, coal, rounded gravel and wheat are selected as the granular materials. Results show that the mechanical properties of granular materials (including bulk density, elastic modulus, Poisson's ratio, dilation angle, internal friction angle, cohesion) and silo designs (especially dip angle) have significant effects on the contact statuses at the interface between conical silos and granular materials: 1) For various granular material, 3 contact statuses, i.e. the form of near contact, sliding contact and sticking contact, can be found between granular materials and conical silo walls; 2) The contact statuses between conical silos and granular materials do not depend on (or not mainly depend on) any mechanical property of granular materials. The contact statuses are a combined effect of all mechanical properties of granular materials. Those granular materials with very small dilation angle may have the near contact statuses. Those granular materials with higher cohesive force usually present a smaller sticking contact area, and those granular materials with higher elastic modulus and bulk density usually present a larger sticking contact area than those with opposite material properties; 3) With the decreasing of conical silo depth, the near contact area disappears, the sliding contact area decreases and the sticking contact area increases. 4) Under the sliding contact status, the friction energy dissipation is mainly due to the relative motion between contact surfaces. Under the sticking contact status, the friction energy dissipation is mainly due to the elastic deformation because of the contact. The greater the sticking contact area, the more difficultly the silo discharges. The greater the sliding contact area, the more seriously the silo internal surfaces could be damaged. Since larger sticking/sliding contact area inevitably causes unloading difficulties or friction damage, contact statuses between granular materials and conical silos should be optimized in the silos design in order to boost storage efficiency
Analytical vectorial structure of non-paraxial four-petal Gaussian beams in the far field
The analytical vectorial structure of non-paraxial four-petal Gaussian
beams(FPGBs) in the far field has been studied based on vector angular spectrum
method and stationary phase method. In terms of analytical electromagnetic
representations of the TE and TM terms, the energy flux distributions of the TE
term, the TM term, and the whole beam are derived in the far field,
respectively. According to our investigation, the FPGBs can evolve into a
number of small petals in the far field. The number of the petals is determined
by the order of input beam. The physical pictures of the FPGBs are well
illustrated from the vectorial structure, which is beneficial to strengthen the
understanding of vectorial properties of the FPGBs
Vectorial structure of a hard-edged-diffracted four-petal Gaussian beam in the far field
Based on the vector angular spectrum method and the stationary phase method
and the fact that a circular aperture function can be expanded into a finite
sum of complex Gaussian functions, the analytical vectorial structure of a
four-petal Gaussian beam (FPGB) diffracted by a circular aperture is derived in
the far field. The energy flux distributions and the diffraction effect
introduced by the aperture are studied and illustrated graphically. Moreover,
the influence of the f-parameter and the truncation parameter on the
nonparaxiality is demonstrated in detail. In addition, the analytical formulas
obtained in this paper can degenerate into un-apertured case when the
truncation parameter tends to infinity. This work is beneficial to strengthen
the understanding of vectorial properties of the FPGB diffracted by a circular
aperture
Recognizing License Plates in Real-Time
License plate detection and recognition (LPDR) is of growing importance for
enabling intelligent transportation and ensuring the security and safety of the
cities. However, LPDR faces a big challenge in a practical environment. The
license plates can have extremely diverse sizes, fonts and colors, and the
plate images are usually of poor quality caused by skewed capturing angles,
uneven lighting, occlusion, and blurring. In applications such as surveillance,
it often requires fast processing. To enable real-time and accurate license
plate recognition, in this work, we propose a set of techniques: 1) a contour
reconstruction method along with edge-detection to quickly detect the candidate
plates; 2) a simple zero-one-alternation scheme to effectively remove the fake
top and bottom borders around plates to facilitate more accurate segmentation
of characters on plates; 3) a set of techniques to augment the training data,
incorporate SIFT features into the CNN network, and exploit transfer learning
to obtain the initial parameters for more effective training; and 4) a
two-phase verification procedure to determine the correct plate at low cost, a
statistical filtering in the plate detection stage to quickly remove unwanted
candidates, and the accurate CR results after the CR process to perform further
plate verification without additional processing. We implement a complete LPDR
system based on our algorithms. The experimental results demonstrate that our
system can accurately recognize license plate in real-time. Additionally, it
works robustly under various levels of illumination and noise, and in the
presence of car movement. Compared to peer schemes, our system is not only
among the most accurate ones but is also the fastest, and can be easily applied
to other scenarios.Comment: License Plate Detection and Recognition, Computer Vision, Supervised
Learnin
Recommended from our members
Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals.
In atomically-thin two-dimensional (2D) semiconductors, the nonuniformity in current flow due to its edge states may alter and even dictate the charge transport properties of the entire device. However, the influence of the edge states on electrical transport in 2D materials has not been sufficiently explored to date. Here, we systematically quantify the edge state contribution to electrical transport in monolayer MoS2/WSe2 field-effect transistors, revealing that the charge transport at low temperature is dominated by the edge conduction with the nonlinear behavior. The metallic edge states are revealed by scanning probe microscopy, scanning Kelvin probe force microscopy and first-principle calculations. Further analyses demonstrate that the edge-state dominated nonlinear transport shows a universal power-law scaling relationship with both temperature and bias voltage, which can be well explained by the 1D Luttinger liquid theory. These findings demonstrate the Luttinger liquid behavior in 2D materials and offer important insights into designing 2D electronics
PAR4 (Protease-Activated Receptor 4) Antagonism with BMS-986120 Inhibits Human Ex Vivo Thrombus Formation
Objective-BMS-986120 is a novel first-in-class oral PAR4 (protease-Activated receptor 4) antagonist with potent and selective antiplatelet effects. We sought to determine for the first time, the effect of BMS-986120 on human ex vivo thrombus formation. Approach and Results-Forty healthy volunteers completed a phase 1 parallel-group PROBE trial (Prospective Randomized Open-Label Blinded End Point). Ex vivo platelet activation, platelet aggregation, and thrombus formation were measured at 0, 2, and 24 hours after (1) oral BMS-986120 (60 mg) or (2) oral aspirin (600 mg) followed at 18 hours with oral aspirin (600 mg) and oral clopidogrel (600 mg). BMS-986120 demonstrated highly selective and reversible inhibition of PAR4 agonist peptide (100 μM)-stimulated P-selectin expression, platelet-monocyte aggregates, and platelet aggregation (P<0.001 for all). Compared with pretreatment, total thrombus area (μm2/mm) at high shear was reduced by 29.2% (95% confidence interval, 18.3%-38.7%; P<0.001) at 2 hours and by 21.4% (9.3%-32.0%; P=0.002) at 24 hours. Reductions in thrombus formation were driven by a decrease in platelet-rich thrombus deposition: 34.8% (19.3%-47.3%; P<0.001) at 2 hours and 23.3% (5.1%-38.0%; P=0.016) at 24 hours. In contrast to aspirin alone, or in combination with clopidogrel, BMS-986120 had no effect on thrombus formation at low shear (P=nonsignificant). BMS-986120 administration was not associated with an increase in coagulation times or serious adverse events. Conclusions-BMS-986120 is a highly selective and reversible oral PAR4 antagonist that substantially reduces platelet-rich thrombus formation under conditions of high shear stress. Our results suggest PAR4 antagonism has major potential as a therapeutic antiplatelet strategy. Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439190
- …
