31 research outputs found
Down-Regulation of MiR-150 Alleviates Inflammatory Injury Induced by Interleukin 1 via Targeting Kruppel-Like Factor 2 in Human Chondrogenic Cells
Background/Aims: Interleukin-1 (IL-1) is known to be involved in cartilage degeneration following joint injury or due to osteoarthritis. In the present study, we explored the effects of miR-150 on IL-1-stimulated human chondrogenic cells ATDC5. Methods: ATDC5 cells were transfected with the mimic, inhibitor or negative controls specific for miR-150, and subsequently treated by IL-1. CCK8 assay, PI and FITC-conjugated Annexin V double-staining, Western blot, qRT-PCR and ELISA assay were performed to determine the changes of cell viability, apoptosis, and the release of pro-inflammatory cytokines. Targeting relationship between miR-150 and KLF2 was detected by dual luciferase activity assay. Results: IL-1 reduced cell viability, induced apoptosis, and enhanced the expression and release of pro-inflammatory cytokines (IL-6, IL-8 and TNF-α) in ATDC5 cells. IL-1 also increased the expression of miR-150. Suppression of miR-150 alleviated IL-1-induced cell damage in ATDC5 cells, while overexpression of miR-150 resulted in an opposite impact. KLF2 was negatively regulated by miR-150, and it was proved as a target gene of miR-150. KLF2 overexpression exhibited protective actions in IL-1-injured ATDC5 cells, even if miR-150 was suppressed in cell. Moreover, IL-1-induced activation of NF-kB and Notch pathways was alleviated by KLF2 overexpression. Conclusions: Suppression of miR-150 led to up-regulation of KLF2, which in turn protected ATDC5 cells against IL-1-induced injury
The role of the tumor microenvironment in HNSCC resistance and targeted therapy
The prognosis for head and neck squamous cell carcinoma (HNSCC) remains unfavorable, primarily due to significant therapeutic resistance and the absence effective interventions. A major obstacle in cancer treatment is the persistent resistance of cancer cells to a variety of therapeutic modalities. The tumor microenvironment (TME) which includes encompasses all non-malignant components and their metabolites within the tumor tissue, plays a crucial role in this context. The distinct characteristics of the HNSCC TME facilitate tumor growth, invasion, metastasis, and resistance to treatment. This review provides a comprehensive overview of the HNSCC TME components, with a particular focus on tumor-associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), the extracellular matrix, reprogrammed metabolic processes, and metabolic products. It elucidates their contributions to modulating resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy in HNSCC, and explores novel therapeutic strategies targeting the TME for HNSCC management
Design and Modeling of a Test Bench for Dual-Motor Electric Drive Tracked Vehicles Based on a Dynamic Load Emulation Method
Dual-motor Electric Drive Tracked Vehicles (DDTVs) have attracted increasing attention due to their high transmission efficiency and economical fuel consumption. A test bench for the development and validation of new DDTV technologies is necessary and urgent. How to load the vehicle on a DDTV test bench exactly the same as on a real road is a crucial issue when designing the bench. This paper proposes a novel dynamic load emulation method to address this problem. The method adopts dual dynamometers to simulate both the road load and the inertia load that are imposed on the dual independent drive systems. The vehicle’s total inertia equivalent to the drive wheels is calculated with separate consideration of vehicle body, tracks and road wheels to obtain a more accurate inertia load. A speed tracking control strategy with feedforward compensation is implemented to control the dual dynamometers, so as to make the real-time dynamic load emulation possible. Additionally, a MATLAB/Simulink model of the test bench is built based on a dynamics analysis of the platform. Experiments are finally carried out on this test bench under different test conditions. The outcomes show that the proposed load emulation method is effective, and has good robustness and adaptability to complex driving conditions. Besides, the accuracy of the established test bench model is also demonstrated by comparing the results obtained from the simulation model and experiments
Baicalin alleviates IL-1β-induced inflammatory injury via down-regulating miR-126 in chondrocytes
An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations
This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs). Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect
Diagenesis and its influence on reservoir quality and oil-water relative permeability: A case study in the Yanchang Formation Chang 8 tight sandstone oil reservoir, Ordos Basin, China
Different from conventional reservoirs, unconventional tight sand oil reservoirs are characterized by low or ultra-low porosity and permeability, small pore-throat size, complex pore structure and strong heterogeneity. For the continuous exploration and enhancement of oil recovery from tight oil, further analysis of the origins of the different reservoir qualities is required. The Upper Triassic Chang 8 sandstone of the Yanchang Formation from the Maling Oilfield is one of the major tight oil bearing reservoirs in the Ordos Basin. Practical exploration demonstrates that this formation is a typical tight sandstone reservoir. Samples taken from the oil layer were divided into 6 diagenetic facies based on porosity, permeability and the diagenesis characteristics identified through thin section and scanning electron microscopy. To compare pore structure and their seepage property, a high pressure mercury intrusion experiments (HPMI), nuclear magnetic resonance (NMR), andwater-oil relative permeability test were performed on the three main facies developed in reservoir. The reservoir quality and seepage property are largely controlled by diagenesis. Intense compaction leads to a dominant loss of porosity in all sandstones, while different degrees of intensity of carbonate cementation and dissolution promote the differentiation of reservoir quality. The complex pore structure formed after diagenesis determines the seepage characteristics, while cementation of chlorite and illite reduce the effective pore radius, limit fluid mobility, and lead to a serious reduction of reservoir permeability
Solvothermal synthesis of graphene encapsulated selenium/carboxylated carbon nanotubes electrode for lithium–selenium battery
Down-Regulation of MiR-150 Alleviates Inflammatory Injury Induced by Interleukin 1 via Targeting Kruppel-Like Factor 2 in Human Chondrogenic Cells
Limited Domain SnSb@N-PC Composite Material as a High-Performance Anode for Sodium Ion Batteries
Anode materials have a vital influence on the performance of sodium ion batteries. In this paper, SnSb nanoparticles were distributed uniformly in N-doped three-dimensional porous carbon (SnSb@N-PC), which effectively avoided the agglomeration of alloy nanoparticles and greatly improved the capacity retention rate of SnSb@N-PC. At the same time, the porous carbon substrate brings higher conductivity, larger specific surface area, and more sodium storage sites, which makes the material obtain excellent sodium storage properties. The first discharge-specific capacity of SnSb@N-PC was 846.3 mAh g−1 at the current density of 0.1 A g−1, and the specific capacity remained at 483 mAh g−1 after 100 cycles. Meanwhile, the specific capacity of SnSb@N-PC was kept at 323 mAh g−1 after 400 cycles at a high current density of 1.5 A g−1, which indicated that the recombination of SnSb with porous carbon played a key role in the electrochemical performance of SnSb. The contribution of capacitance contrast capacity was able to reach more than 90% by the cyclic voltammetry (CV) test at high sweep speed, and larger Na+ diffusivity was obtained by the constant current intermittent titration technique (GITT) test, which explains the good rate performance of SnSb@N-PC
