16,732 research outputs found
Transcriptome sequencing and analysis of the zoonotic parasite Spirometra erinacei spargana (plerocercoids)
BACKGROUND: Although spargana, which are the plerocercoids of Spirometra erinacei, are of biological and clinical importance, expressed sequence tags (ESTs) from this parasite have not been explored. To understand molecular and biological features of this parasite, sparganum ESTs were examined by large-scale EST sequencing and multiple bioinformatics tools. METHODS: Total RNA was isolated from spargana and then ESTs were generated, assembled and sequenced. Many biological aspects of spargana were investigated using multi-step bioinformatics tools. RESULTS: A total of 5,634 ESTs were collected from spargana. After clustering and assembly, the functions of 1,794 Sparganum Assembled ESTs (SpAEs) including 934 contigs and 860 singletons were analyzed. A total of 1,351 (75%) SpAEs were annotated using a hybrid of BLASTX and InterProScan. Of these genes, 1,041 (58%) SpAEs had high similarity to tapeworms. In the context of the biology of sparganum, our analyses reveal: (i) a highly expressed fibronectin 1, a ubiquitous and abundant glycoprotein; (ii) up-regulation of enzymes related with glycolysis pathway; (iii) most frequent domains of protein kinase and RNA recognition motif domain; (iv) a set of helminth-parasitic and spargana-specific genes that may offer a number of antigen candidates. CONCLUSIONS: Our transcriptomic analysis of S. erinacei spargana demonstrates biological aspects of a parasite that invades and travels through subcutaneous tissue in intermediate hosts. Future studies should include comparative analyses using combinations of transcriptome and proteome data collected from the entire life cycle of S. erinacei. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1756-3305-7-368) contains supplementary material, which is available to authorized users
A Novel Two-Channel Continuous-Time Time-Interleaved 3rd-order Sigma- Delta Modulator with Integrator-Sharing Topology
this paper presents a 3rd-order two-path Continuous-Time Time-Interleaved (CTTI) delta-sigma modulator which is
implemented in standard 90nm CMOS technology. The architecture uses a novel method to resolve the delayless feedback path issue arising from the sharing of integrators between paths. By exploiting the concept of the time-interleaving techniques and through the use time domain equations, a conventional single path 3rd-order Discrete-Time (DT) ΔΣ modulator is converted into a corresponding two-path Discrete-Time Time-Interleaved (DTTI) counterpart. The equivalent Continuous-Time Time-Interleaved version derived from the DTTI ΔΣ modulator by determining the DT loop filters and converting them to the equivalent Continuous-Time (CT) loop filters through the use of the Impulse Invariant Transformation. Sharing the integrators between two
paths of the reported modulator makes it robust to path mismatch effects compared to the typical Time-Interleaved (TI) modulators which have individual integrators in all paths. The modulator achieves a dynamic range of 12 bits with an OverSampling Ratio (OSR) of 16 over a bandwidth of 10MHz and dissipates only 28mW of power from a 1.8-V supply. The
clock frequency of the modulator is 320MHz but integrators, quantizers and DACs operate at 160MHz
Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions
Photosynthesis by phytoplankton in sunlit surface waters transforms inorganic carbon and nutrients into organic matter, a portion of which is subsequently transported vertically through the water column by the process known as the biological carbon pump (BCP). The BCP sustains the steep vertical gradient in total dissolved carbon, thereby contributing to net carbon sequestration. Any changes in the vertical transportation of the organic matter as a result of future climate variations will directly affect surface ocean carbon dioxide (CO 2) concentrations, and subsequently influence oceanic uptake of atmospheric CO 2 and climate. Here we present results of experiments designed to investigate the potential effects of ocean acidification and warming on the BCP. These perturbation experiments were carried out in enclosures (3,000 L volume) in a controlled mesocosm facility that mimicked future pCO 2 (∼900 ppmv) and temperature (3°C higher than ambient) conditions. The elevated CO 2 and temperature treatments disproportionately enhanced the ratio of dissolved organic carbon (DOC) production to particulate organic carbon (POC) production, whereas the total organic carbon (TOC) production remained relatively constant under all conditions tested. A greater partitioning of organic carbon into the DOC pool indicated a shift in the organic carbon flow from the particulate to dissolved forms, which may affect the major pathways involved in organic carbon export and sequestration under future ocean conditions
Use of the q-Gaussian mutation in evolutionary algorithms
Copyright @ Springer-Verlag 2010.This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.This work was supported in part by FAPESP and CNPq in Brazil and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/E060722/1 and Grant EP/E060722/2
Hot Streaks in Artistic, Cultural, and Scientific Careers
The hot streak, loosely defined as winning begets more winnings, highlights a
specific period during which an individual's performance is substantially
higher than her typical performance. While widely debated in sports, gambling,
and financial markets over the past several decades, little is known if hot
streaks apply to individual careers. Here, building on rich literature on
lifecycle of creativity, we collected large-scale career histories of
individual artists, movie directors and scientists, tracing the artworks,
movies, and scientific publications they produced. We find that, across all
three domains, hit works within a career show a high degree of temporal
regularity, each career being characterized by bursts of high-impact works
occurring in sequence. We demonstrate that these observations can be explained
by a simple hot-streak model we developed, allowing us to probe quantitatively
the hot streak phenomenon governing individual careers, which we find to be
remarkably universal across diverse domains we analyzed: The hot streaks are
ubiquitous yet unique across different careers. While the vast majority of
individuals have at least one hot streak, hot streaks are most likely to occur
only once. The hot streak emerges randomly within an individual's sequence of
works, is temporally localized, and is unassociated with any detectable change
in productivity. We show that, since works produced during hot streaks garner
significantly more impact, the uncovered hot streaks fundamentally drives the
collective impact of an individual, ignoring which leads us to systematically
over- or under-estimate the future impact of a career. These results not only
deepen our quantitative understanding of patterns governing individual
ingenuity and success, they may also have implications for decisions and
policies involving predicting and nurturing individuals with lasting impact
Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting
Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices
Design of a pulse power supply unit for micro-ECM
Electrochemical micro-machining (μECM) requires a particular pulse power supply unit (PSU) to be developed in order to achieve desired machining performance. This paper summarises the development of a pulse PSU meeting the requirements of μECM. The pulse power supply provides tens of nanosecond pulse duration, positive and negative bias voltages and a polarity switching functionality. It fulfils the needs for tool preparation with reversed pulsed ECM on the machine. Moreover, the PSU is equipped with an ultrafast overcurrent protection which prevents the tool electrode from being damaged in case of short circuits. The developed pulse PSU was used to fabricate micro-tools out of 170 μm WC-Co alloy shafts via micro-electrochemical turning and drill deep holes via μECM in a disk made of 18NiCr6. The electrolyte used for both processes was a mixture of sulphuric acid and NaNO3 aqueous solutions.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMP-ICT-FoF-285614
Structural Insight into Host Recognition by Aggregative Adherence Fimbriae of Enteroaggregative Escherichia coli
AVZ is supported by the Finnish Academy (grant 273075; http://sciencenordic.com/partner/academy-finland). The EACEA (http://eacea.ec.europa.eu) supports NP for an Erasmus Mundus scholarship. SM is supported by the Wellcome Trust (Senior Investigator Award 100280, Programme grant 079819; equipment grant 085464; http://www.wellcome.ac.uk)) and the Leverhulme Trust (RPG-2012-559; http://www.leverhulme.ac.uk). JPN and AAB are supported by a US Public Health Service grant (AI-033096; www.usphs.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia
BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci
Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors.
BackgroundIn 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed.ResultsPre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = -0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = -0.45, P = 0.19).ConclusionsIn conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation
- …
