1,998 research outputs found
Scaling and Universality of the Complexity of Analog Computation
We apply a probabilistic approach to study the computational complexity of
analog computers which solve linear programming problems. We analyze
numerically various ensembles of linear programming problems and obtain, for
each of these ensembles, the probability distribution functions of certain
quantities which measure the computational complexity, known as the convergence
rate, the barrier and the computation time. We find that in the limit of very
large problems these probability distributions are universal scaling functions.
In other words, the probability distribution function for each of these three
quantities becomes, in the limit of large problem size, a function of a single
scaling variable, which is a certain composition of the quantity in question
and the size of the system. Moreover, various ensembles studied seem to lead
essentially to the same scaling functions, which depend only on the variance of
the ensemble. These results extend analytical and numerical results obtained
recently for the Gaussian ensemble, and support the conjecture that these
scaling functions are universal.Comment: 22 pages, latex, 12 eps fig
Modulated Floquet Topological Insulators
Floquet topological insulators are topological phases of matter generated by
the application of time-periodic perturbations on otherwise conventional
insulators. We demonstrate that spatial variations in the time-periodic
potential lead to localized quasi-stationary states in two-dimensional systems.
These states include one-dimensional interface modes at the nodes of the
external potential, and fractionalized excitations at vortices of the external
potential. We also propose a setup by which light can induce currents in these
systems. We explain these results by showing a close analogy to px+ipy
superconductors
Learning with a Drifting Target Concept
We study the problem of learning in the presence of a drifting target
concept. Specifically, we provide bounds on the error rate at a given time,
given a learner with access to a history of independent samples labeled
according to a target concept that can change on each round. One of our main
contributions is a refinement of the best previous results for polynomial-time
algorithms for the space of linear separators under a uniform distribution. We
also provide general results for an algorithm capable of adapting to a variable
rate of drift of the target concept. Some of the results also describe an
active learning variant of this setting, and provide bounds on the number of
queries for the labels of points in the sequence sufficient to obtain the
stated bounds on the error rates
Adolescents’ and young adults’ online risk taking : the role of gist and verbatim representations
Young people are exposed to and engage in online risky activities, such as disclosing personal information and making unknown friends online. Little research has examined the psychological mechanisms underlying young people’s online risk taking. Drawing on Fuzzy Trace Theory, we examined developmental differences in adolescents’ and young adults’ online risk taking and assessed whether differential reliance on gist representations (based on vague, intuitive knowledge) or verbatim representations (based on specific, factual knowledge) could explain online risk taking. One hundred and twenty two adolescents (ages 13-17) and 172 young adults (ages 18-24) were asked about their past online risk taking behaviour, intentions to engage in future risky online behaviour, and gist and verbatim representations. Adolescents had significantly higher intentions to take online risks than young adults. Past risky online behaviours were positively associated with future intentions to take online risks for adolescents and negatively for young adults. Gist representations about risk negatively correlated with intentions to take risks online in both age groups, while verbatim representations positively correlated with online risk intentions, particularly among adolescents. Our results provide novel insights about the underlying mechanisms involved in adolescent and young adults’ online risk taking, suggesting the need to tailor the representation of online risk information to different age groups
Ground-based observations of the relations between lightning charge-moment-change and the physical and optical properties of column sprites
Optical observations of 66 sprites, using a calibrated commercial CCD camera, were conducted in 2009-2010 and 2010-2011 winter seasons as part of the ILAN (Imaging of Lightning And Nocturnal flashes) campaign in the vicinity of Israel and the eastern Mediterranean. We looked for correlations between the properties of parent lightning (specifically, the charge moment change; CMC) to the properties of column sprites, such as the measured radiance, the length and the number of column elements in each sprite event. The brightness of sprites positively correlates with the CMC (0.7) and so does the length of sprite elements (0.83). These results are in agreement with previous studies, and support the QE model of sprite generation. © 2013 Elsevier Ltd
Properties of Classical and Quantum Jensen-Shannon Divergence
Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the
most important divergence measure of information theory, Kullback divergence.
As opposed to Kullback divergence it determines in a very direct way a metric;
indeed, it is the square of a metric. We consider a family of divergence
measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which
generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha
is the square of a metric for alpha lies in the interval (0,2], and that the
resulting metric space of probability distributions can be isometrically
embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a
symmetrized and smoothed version of quantum relative entropy and can be
extended to a family of quantum Jensen divergences of order alpha (QJD_alpha).
We strengthen results by Lamberti et al. by proving that for qubits and pure
states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in
a real Hilbert space when alpha lies in the interval (0,2]. In analogy with
Burbea and Rao's generalization of JD, we also define general QJD by
associating a Jensen-type quantity to any weighted family of states.
Appropriate interpretations of quantities introduced are discussed and bounds
are derived in terms of the total variation and trace distance.Comment: 13 pages, LaTeX, expanded contents, added references and corrected
typo
Recommended from our members
Cosmic ray measurements in the atmosphere at several latitudes in October, 2014
Cosmic ray fluxes in the atmosphere were recorded during balloon flights in October 2014 in northern Murmansk region, Apatity (Russia; 67o33’N, 33o24’E), in Antarctica (observatory Mirny; 66o33’S, 93o00’E), in Moscow (Russia; 55o45’N, 37o37’E), in Reading (United King-dom; 51o27’N, 0o 58’W), in Mitzpe-Ramon (Israel; 30o36’N, 34o48’E) and in Zaragoza (Spain; 41o9’N, 0o54’W). Two type of cosmic ray detectors were used, namely, (1) the standard ra-diosonde and its modification constructed at the Lebedev Physical Institute (Moscow, Russia) and (2) the device manufactured at the Reading University (Reading, United Kingdom). We compare and analyze obtained data and focus on the estimation of the cosmic ray latitudinal effect in the atmosphere
Localisation of RNAs into the germ plasm of vitellogenic xenopus oocytes
We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Recommended from our members
A global atmospheric electricity monitoring network for climate and geophysical research
The Global atmospheric Electric Circuit (GEC) is a fundamental coupling network of the climate system connecting electrically disturbed weather regions with fair weather regions across the planet. The GEC sustains the fair weather electric field (or potential gradient, PG) which is present globally and can be measured routinely at the surface using durable instrumentation such as modern electric field mills, which are now widely deployed internationally. In contrast to lightning or magnetic fields, fair weather PG cannot be measured remotely. Despite the existence of many PG datasets (both contemporary and historical), few attempts have been made to coordinate and integrate these fragmented surface measurements within a global framework. Such a synthesis is important elvinin order to fully study major influences on the GEC such as climate variations and space weather effects, as well as more local atmospheric electrical processes such as cloud electrification, lightning initiation, and dust and aerosol charging.
The GloCAEM (Global Coordination of Atmospheric Electricity Measurements) project has brought together experts in atmospheric electricity to make the first steps towards an effective global network for atmospheric electricity monitoring, which will provide data in near real time. Data from all sites are available in identically-formatted files, at both one second and one minute temporal resolution, along with meteorological data (wherever available) for ease of interpretation of electrical measurements. This work describes the details of the GloCAEM database and presents what is likely to be the largest single analysis of PG data performed from multiple datasets at geographically distinct locations. Analysis of the diurnal variation in PG from all 17 GloCAEM sites demonstrates that the majority of sites show two daily maxima, characteristic of local influences on the PG, such as the sunrise effect. Data analysis methods to minimise such effects are presented and recommendations provided on the most suitable GloCAEM sites for the study of various scientific phenomena. The use of the dataset for a further understanding of the GEC is also demonstrated, in particular for more detailed characterization of day-to-day global circuit variability. Such coordinated effort enables deeper insight into PG phenomenology which goes beyond single-location PG measurements, providing a simple measurement of global thunderstorm variability on a day-to-day timescale. The creation of the GloCAEM database is likely to enable much more effective study of atmospheric electricity variables than has ever been possible before, which will improve our understanding of the role of atmospheric electricity in the complex processes underlying weather and climate
- …
