332 research outputs found

    Research and experimental verification on low-frequency long-range sound propagation characteristics under ice-covered and range-dependent marine environment in the Arctic

    Full text link
    At present, research on sound propagation under the Arctic ice mainly focuses on modeling and experimental verification of sound propagation under sea ice cover and unique sound velocity profiles. Among them, the main research object of concern is sound transmission loss, and this article will delve into the time-domain waveform and fine dispersion structure of low-frequency broadband acoustic signals. Firstly, based on the theory of normal modes, this article derives the horizontal wavenumber expression and warping transformation operator for refractive normal modes in the Arctic deep-sea environment. Subsequently, based on measured ocean environmental parameters and sound field simulation calculations, this article studied the general laws of low-frequency long-range sound propagation signals in the Arctic deep-sea environment, and elucidated the impact mechanism of environmental factors such as seabed terrain changes, horizontal changes in sound velocity profiles (SSPs), and sea ice cover on low-frequency long-range sound propagation in the Arctic. This article validates the above research viewpoint through a sound propagation experiment conducted in the Arctic with a propagation distance exceeding 1000km. The marine environment of this experiment has obvious horizontal variation characteristics. At the same time, this article takes the lead in utilizing the warping transformation of refractive normal waves in the Arctic waters to achieve single hydrophone based separation of normal waves and extraction of dispersion structures, which is conducive to future research on underwater sound source localization and environmental parameter inversion based on dispersion structures.Comment: 46 pages, 35 figure

    Research and experimental verification on low-frequency long-range underwater sound propagation dispersion characteristics under dual-channel sound speed profiles in the Chukchi Plateau

    Full text link
    The dual-channel sound speed profiles of the Chukchi Plateau and the Canadian Basin have become current research hotspots due to their excellent low-frequency sound signal propagation ability. Previous research has mainly focused on using sound propagation theory to explain the changes in sound signal energy. This article is mainly based on the theory of normal modes to study the fine structure of low-frequency wide-band sound propagation dispersion under dual-channel sound speed profiles. In this paper, the problem of the intersection of normal mode dispersion curves caused by the dual-channel sound speed profile (SSP) has been explained, the blocking effect of seabed terrain changes on dispersion structures has been analyzed, and the normal modes has been separated by using modified warping operator. The above research results have been verified through a long-range seismic exploration experiment at the Chukchi Plateau. At the same time, based on the acoustic signal characteristics in this environment, two methods for estimating the distance of sound sources have been proposed, and the experiment data at sea has also verified these two methods.Comment: 30 pages, 18 figure

    Boron nitride nanotube-based amphiphilic hybrid nanomaterials for superior encapsulation of hydrophobic cargos

    Get PDF
    We report an organic-inorganic hybrid core-shell nanomaterial obtained by conjugation of an amphiphilic monomethoxy-poly(ethylene glycol)-b-poly(epsilon-caprolactone) diblock copolymer to hydroxylated boron nitride nanotubes (BNNTs). The extent of copolymer grafting reached 64% w/w, an exceptionally high value. The hybrid materials exhibit excellent physical stability in water and an outstanding loading capacity (31.3% w/w) for curcumin, a hydrophobic drug. Moreover, they present good compatibility with the Caco2 cell line, a model of intestinal epithelium. Our findings demonstrate the potential of multifunctional hybrid BNNTs to serve as a platform for complex amphiphilic nanoparticle architectures with improved features. (c) 2017 Elsevier Ltd. All rights reserved.Peer reviewe

    Microbiota profiling reveals alteration of gut microbial neurotransmitters in a mouse model of autism-associated 16p11.2 microduplication

    Get PDF
    The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/β-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD

    Determination of banned pigment quinoline yellow in pastries by salting out assisted-high performance liquid chromatography

    Get PDF
    ObjectiveTo develop an analytical method for fast determination of banned pigment quinoline yellow in pastries by salting out assisted-high performance liquid chromatography.MethodsThe sample was extracted with 40% methanol-sodium chloride-water, precipitated with potassium ferrocyanide-zinc acetate solution, eluted with mobile phase of methanol-0.02 mol/L ammonium acetate solution, separated by X-Bridge C18 column v(150 mm×4.6 mm, 3.5 μm), and detected with diode -array detector by external standard method.ResultsThe method showed good linearity (r>0.999) in the range of 0.4-40.0 μg/mL. The limit of detection (S/N=3) was 1.25 mg/kg and the limit of quantification (S/N=10) was 5.0 mg/kg. The average recoveries of three different concentrations level at 5.0, 10.0 and 50.0 mg/kg ranged from 89.18% to 110.10%, with relative standard deviation in the range of 2.83%-8.65%.ConclusionThe method was convenient, accurate and reproducible, and it was suitable for qualitative and quantitative analysis of banned pigment quinoline yellow in pastries

    The characteristics and enlightenment of famous energy and power enterprises’ environmental management

    No full text
    Abstract This study compares and analyzes the environmental management cases of well-known foreign energy and power companies, and investigates their environmental management operation modes, environmental protection measures and environmental management performance. Based on the survey data, this paper puts forward the main problems existing in the environmental management of China’s energy and power enterprises. The results show that the world-famous energy and power companies have clear environmental protection strategic goals, first-class environmental protection talents and continuous environmental protection technology. Innovative environment protection abilities include extending the pollution prevention chain, innovation waste recycling and reusing methods, carrying out the research of carbon capture and storage technology, and focusing on protecting biodiversity. In contrast, the environmental management systems of some domestic power enterprises are not compatible with the rapid development of productivity, therefore, an innovative environmental management model is needed.</jats:p

    Subspace-based blind channel estimation for STC-OFDM using few received blocks

    No full text
    corecore