611 research outputs found
A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS
© 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio
The Airlines’ Recent Experience Under the Railway Labor Act
Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function
Modern Extension of Classical Culture Life: British Residential College System and Its World Influence
Residential College system was originated in Middle Ages, first founded in Paris, perfected in Oxford, and had proven to be the most important sign of British universities. Even to this day, residential college still retained in British universities, and inherited by American universities. With long history and unique concept, residential college system is not only a kind of enduring housing system, but also an effective cultivation system. Furthermore, it is an indication of spirit and creative culture life of university, which has a very important significance to Chinese universities. To learn from residential colleges, we need to combine theoretical logic and practical logic, and gain a clear idea of that the construction and operation of system must be established in the cultural basis
Heave Motion Measurement by Adaptive Filter Based on Longuet-Higgins Wave Model
A method is proposed to obtain heave motion information based on the Longuet-Higgins wave model. The Longuet-Higgins wave model which is closer to the sea wave is introduced. Based on it, random process of the noise is analyzed and the highpass filter is designed to reduce errors. Then it is the key point in this article that an adaptive algorithm is put forward because of the complexity of the waves. The algorithm adjusts the cutoff frequency to reduce the amplitude attenuation of the filter by analyzing the wave. For the same reason the comprehensive parameter of the phase compensation can be also obtained by the algorithm. Simulation measurement results show that under the rough sea situation the maximum value of absolute error is 0.4942 m according to the normal method, the method is 0.1170 m, and the average error ratio of the rough sea test reduces to 3.89% from 12.54%, which demonstrates that the adaptive filter is more effective in measuring heave movement. A variety of simulation cases show that the adaptive filter can also improve the precision of the heave motion under different sea situations
Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model
Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions
10-Hertz quantum light source generation on the cesium D2 line using single photon modulation
Generation of quantum light source is a promising technique to overcome the
standard quantum limit in precision measurement. Here, we demonstrate an
experimental generation of quadrature squeezing resonating on the cesium D2
line down to 10 Hz for the first time. The maximum squeezing in audio frequency
band is 5.57 dB. Moreover, we have presented a single-photon modulation locking
to control the squeezing angle, while effectively suppressing the influence of
laser noise on low-frequency squeezing. The whole system operates steadily for
hours. The generated low-frequency quantum light source can be applied in
quantum metrology,light-matter interaction investigation and quantum memory in
the audio frequency band and even below
Double band inversion in the topological phase transition of Ge1-xSnx alloys
We use first-principles simulation and virtual crystal approximation to
reveal the unique double band inversion and topological phase transition in
Ge1-xSnx alloys. Wavefunction parity, spatial charge distribution and surface
state spectrum analyses suggest that the band inversion in Ge1-xSnx is relayed
by its first valence band. As the system evolves from Ge to {\alpha}-Sn, its
conduction band moves down, and inverts with the first and the second valence
bands consecutively. The first band inversion makes the system nontrivial,
while the second one does not change the topological invariant of the system.
Both the band inversions yield surface modes spanning the individual inverted
gaps, but only the surface mode in the upper gap associates with the nontrivial
nature of tensile-strained {\alpha}-Sn.Comment: 5 pages, 6 figure
Combined features in region of interest for brain tumor segmentation
Diagnosis of brain tumor gliomas is a challenging task in medical image analysis due to its complexity, the less regularity of tumor structures, and the diversity of tissue textures and shapes. Semantic segmentation approaches using deep learning have consistently outperformed the previous methods in this challenging task. However, deep learning is insufficient to provide the required local features related to tissue texture changes due to tumor growth. This paper designs a hybrid method arising from this need, which incorporates machine-learned and hand-crafted features. A semantic segmentation network (SegNet) is used to generate the machine-learned features, while the grey-level co-occurrence matrix (GLCM)-based texture features construct the hand-crafted features. In addition, the proposed approach only takes the region of interest (ROI), which represents the extension of the complete tumor structure, as input, and suppresses the intensity of other irrelevant area. A decision tree (DT) is used to classify the pixels of ROI MRI images into different parts of tumors, i.e. edema, necrosis and enhanced tumor. The method was evaluated on BRATS 2017 dataset. The results demonstrate that the proposed model provides promising segmentation in brain tumor structure. The F-measures for automatic brain tumor segmentation against ground truth are 0.98, 0.75 and 0.69 for whole tumor, core and enhanced tumor, respectively
K13 blocks KSHV lytic replication and deregulates vIL6 nad hIL6 expression: A model of lytic replication induced clonal selection in viral oncogenesis
Background. Accumulating evidence suggests that dysregulated expression of lytic genes plays an important role in KSHV (Kaposi's sarcoma associated herpesvirus) tumorigenesis. However, the molecular events leading to the dysregulation of KSHV lytic gene expression program are incompletely understood. Methodoloxy/Principal Findings. We have studied the effect of KSHV-encoded latent protein vFLIP K13, a potent activator of the NF-κB pathway, on lytic reactivation of the virus. We demonstrate that K13 antagonizes RTA, the KSHV lytic-regulator, and effectively blocks the expression of lytic proteins, production of infectious virions and death of the infected cells. Induction of lytic replication selects for clones with increased K13 expression and NF-κB activity, while siRNA-mediated silencing of K13 induces the expression of lytic genes. However, the suppressive effect of K13 on RTA-induced lytic genes is not uniform and it falls to block RTA-induced viral IL6 secretion and cooperates with RTA to enhance cellular IL-6 production, thereby dysregulating the lytic gene expression program. Conclusions/Significance. Our results support a model in which ongoing KSHV, lytic replication selects for clones with progressively higher levels of K13 expression and NF-κB activity, which in turn drive KSHV tumorigenesis by not only directly stimulating cellular survival and proliferation, but also indirectly by dysregulating the viral lytic gene program and allowing non-lytic production of growth-promoting viral and cellular genes. Lytic Replication-Induced Clonal Selection (LyRICS) may represent a general mechanism in viral oncogenesis. 2007 Zhao et al
New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east–west lineage split and genetic mixture within western subtropical China
Background Subtropical China is a global center of biodiversity and one of the most important refugia worldwide. Mountains play an important role in conserving the genetic resources of species. Liriodendron chinense is a Tertiary relict tree largely endemic to subtropical China. In this study, we aimed to achieve a better understanding of the phylogeographical pattern of L. chinense and to explore the role of mountains in the conservation of L. chinense genetic resources. Methods Three chloroplast regions (psbJ-petA, rpl32-ndhF, and trnK5’-matK) were sequenced in 40 populations of L. chinense for phylogeographical analyses. Relationships among chloroplast DNA (cpDNA) haplotypes were determined using median-joining networks, and genetic structure was examined by spatial analysis of molecular variance (SAMOVA). The ancestral area of the species was reconstructed using the Bayesian binary Markov Chain Monte Carlo (BBM) method according to its geographic distribution and a maximum parsimony (MP) tree based on Bayesian methods. Results Obvious phylogeographic structure was found in L. chinense. SAMOVA revealed seven groups matching the major landscape features of the L. chinense distribution area. The haplotype network showed three clades distributed in the eastern, southwestern, and northwestern regions. Separate northern and southern refugia were found in the Wu Mountains and Yungui Plateau, with genetic admixture in the Dalou Mountains and Wuling Mountains. BBM revealed a more ancient origin of L. chinense in the eastern region, with a west–east split most likely having occurred during the Mindel glacial stage. Discussion The clear geographical distributions of haplotypes suggested multiple mountainous refugia of L. chinense. The east–west lineage split was most likely a process of gradual genetic isolation and allopatric lineage divergence when the Nanling corridor was frequently occupied by evergreen or coniferous forest during Late Quaternary oscillations. Hotspots of haplotype diversity in the Dalou Mountains and Wuling Mountains likely benefited from gene flow from the Wu Mountains and Yungui Plateau. Collectively, these results indicate that mountain regions should be the main units for conserving and collecting genetic resources of L. chinense and other similar species in subtropical China
- …
