1,596 research outputs found
Attentional capture by entirely irrelevant distractors
Studies of attentional capture often question whether an irrelevant distractor will capture attention or be successfully ignored (e.g., Folk & Remington, 1998). Here we establish a new measure of attentional capture by distractors that are entirely irrelevant to the task in terms of visual appearance, meaning, and location (colourful cartoon figures presented in the periphery while subjects perform a central letter-search task). The presence of such a distractor significantly increased search RTs, suggesting it captured attention despite its task-irrelevance. Such attentional capture was found regardless of whether the search target was a singleton or not, and for both frequent and infrequent distractors, as well as for meaningful and meaningless distractor stimuli, although the cost was greater for infrequent and meaningful distractors. These results establish stimulus-driven capture by entirely irrelevant distractors and thus provide a demonstration of attentional capture that is more akin to distraction by irrelevant stimuli in daily life
Visual distraction in cytopathology: should we be concerned?
Visual distraction in cytopathology has not been previously investigated as a source of diagnostic error, presumably because the viewing field of a conventional light microscope is considered large enough to minimise interference from peripheral visual stimuli. Virtual microscopy, which involves the examination of digitised images of pathology specimens on computer screens, is beginning to challenge the central role of light microscopy as a diagnostic tool in cytopathology. The relatively narrow visual angle offered by virtual microscopy makes it conceivable that users of these systems are more vulnerable to visual interference.
Using a variant of a visual distraction paradigm (the Eriksen flanker task), the aim of the study was to determine whether the accuracy and speed of interpreting cells on a central target screen is affected by images of cells and text displayed on neighbouring monitors under realistic reading room conditions
Radio Observations of HD 80606 Near Planetary Periastron
This paper reports Very Large Array observations at 325 and 1425 MHz (90cm
and 20cm) during and near the periastron passage of HD 80606b on 2007 November
20. We obtain flux density limits (3-sigma) of 1.7 mJy and 48 microJy at 325
and 1425 MHz, respectively, equivalent to planetary luminosity limits of 2.3 x
10^{24} erg/s and 2.7 x 10^{23} erg/s. These are well above the Jovian value
(at 40 MHz) of 2 x 10^{18} erg/s. The motivation for these observations was
that the planetary magnetospheric emission is driven by a stellar
wind-planetary magnetosphere interaction so that the planetary luminosity would
be elevated. Near periastron, HD 80606b might be as much as 3000 times more
luminous than Jupiter. Recent transit observations of HD 80606b provide
stringent constraints on the planetary mass and radius, and, because of the
planet's highly eccentric orbit, its rotation period is likely to be
"pseudo-synchronized" to its orbital period, allowing a robust estimate of the
former. We are able to make robust estimates of the emission frequency of the
planetary magnetospheric emission and find it to be around 60--90 MHz. We
compare HD 80606b to other high-eccentricity systems and assess the detection
possibilities for both near-term and more distant future systems. Of the known
high eccentricity planets, only HD 80606b is likely to be detectable, as HD
20782B b and HD 4113b are both likely to have weaker magnetic field strengths.
Both the forthcoming "EVLA low band" system and the Low Frequency Array may be
able to improve upon our limits for HD 80606b, and do so at a more optimum
frequency. If the low-frequency component of the Square Kilometre Array
(SKA-lo) and a future lunar radio array are able to approach their thermal
noise limits, they should be able to detect an HD 80606b-like planet, unless
the planet's luminosity increases by substantially less than a factor of 3000.Comment: 9 pages; accepted for publication in A
Commentary: Viewing photos and reading nouns of natural graspable objects similarly modulate motor responses
Commentary: Viewing photos and reading nouns of natural graspable objects similarly modulate motor response
Primary visual cortex activity along the apparent-motion trace reflects illusory perception
The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1) is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex
Competition between auditory and visual spatial cues during visual task performance
There is debate in the crossmodal cueing literature as to whether capture of visual attention by means of sound is a fully automatic process. Recent studies show that when visual attention is endogenously focused sound still captures attention. The current study investigated whether there is interaction between exogenous auditory and visual capture. Participants preformed an orthogonal cueing task, in which, the visual target was preceded by both a peripheral visual and auditory cue. When both cues were presented at chance level, visual and auditory capture was observed. However, when the validity of the visual cue was increased to 80% only visual capture and no auditory capture was observed. Furthermore, a highly predictive (80% valid) auditory cue was not able to prevent visual capture. These results demonstrate that crossmodal auditory capture does not occur when a competing predictive visual event is presented and is therefore not a fully automatic process
The Family History of Kourtney L. Yantis
Kourtney Lawren Yantis authored this family history as part of the course requirements for HIST 550/700 Your Family in History offered online in Winter/Fall 2018 and was submitted to the Pittsburg State University Digital Commons. Please contact the author directly with any questions or comments: [email protected]
- …
