755 research outputs found

    Pump-probe scheme for optical coherence tomography using indocyanine green mixed with albumin or human plasma

    Get PDF
    Use of indocyanine green (ICG) in a pump-probe scheme for OCT is proposed. The study illustrates that ICG in protein solution shows unusual pump-probe imaging potential, indicating its usefulness as a contrast agent for OCT

    MOLECULAR CHARACTERIZATION BY USING RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD) ANALYSIS OF SALMONELLA ENTERITIDIS ISOLATES RECOVERED FROM AVIAN AND HUMAN SOURCES

    Get PDF
    Random amplified polymorphic DNA (RAPD) analysis was applied for molecular characterization of five Salmonella enteritidis strains from different avian sources and human cases of infection. A total of 16 primers were used and only five primers showed good discriminatory power for all five isolates. Dendrogram showed a common lineage among all five isolates. There was a close genetic relationship among isolates of eggs and human sources, while there was less pronounced homology among isolates of broiler meat and human sources. On the basis of results we have found that an endemic strain of S. enteritidis is prevalent between the poultry derived food and humans which gives us an insight to genetic diversity of S. enteritidis from these sources

    Isotropic Mid-Infrared Emission from the Central 100 pc of Active Galaxies

    Full text link
    Dust reprocesses the intrinsic radiation of active galactic nuclei (AGNs) to emerge at longer wavelengths. The observed mid-infrared (MIR) luminosity depends fundamentally on the luminosity of the central engine, but in detail it also depends on the geometric distribution of the surrounding dust. To quantify this relationship, we observe nearby normal AGNs in the MIR to achieve spatial resolution better than 100 pc, and we use absorption-corrected X-ray luminosity as a proxy for the intrinsic AGN emission. We find no significant difference between optically classified Seyfert 1 and 2 galaxies. Spectroscopic differences, both at optical and IR wavelengths, indicate that the immediate surroundings of AGNs is not spherically symmetric, as in standard unified AGN models. A quantitative analysis of clumpy torus radiative transfer models shows that a clumpy local environment can account for this dependence on viewing geometry while producing MIR continuum emission that remains nearly isotropic, as we observe, although the material is not optically thin at these wavelengths. We find some luminosity dependence on the X-ray/MIR correlation in the smallest scale measurements, which may indicate enhanced dust emission associated with star formation, even on these sub-100 pc scales.Comment: 10 pages, 5 figures; accepted for publication in Ap

    Probing the unified model in NGC 7314

    Full text link
    We present a study of the complex absorbed X-ray spectrum of the Narrow Line Seyfert 1 galaxy NGC 7314. We collected available public X-ray data from the archives of XMM-Newton, Suzaku, and ASCA. The spectra were analyzed using the fitting package SPEX. We find evidence of intrinsic neutral and ionized absorption in the XMM-Newton EPIC-pn spectrum. The ionized gas presents three significantly distinct ionization phases, although its kinematic properties could not be disentangled. At least two of these phases are also detected in the RGS spectrum, although with less significance due to the low statistics. The ASCA and Suzaku spectra show larger neutral absorption but no ionized gas signatures. The Fe Kalpha emission line is detected in all the observations and, additionally, Fe XXVI in the EPIC-pn spectrum, and Fe Kbeta in the Suzaku XIS spectrum. Using this observational evidence we construct a consistent picture of the geometry of the system in the context of the unified model of active galactic nuclei. The different observational properties are thus interpreted as clouds of neutral gas moving across our line of sight, which would be grazing a clumpy dusty torus.Comment: 9 pages, 8 figures. Accepted for publication in Astronomy and Astrophysic

    The Nature of the Emission Components in the Quasar/NLS1 PG1211+143

    Get PDF
    We present the study of the emission properties of the quasar PG1211+143, which belongs to the class of Narrow Line Seyfert 1 galaxies. On the basis of observational data analyzed by us and collected from the literature, we study the temporal and spectral variability of the source in the optical/UV/X-ray bands and we propose a model that explains the spectrum emitted in this broad energy range. In this model, the intrinsic emission originating in the warm skin of the accretion disk is responsible for the spectral component that is dominant in the softest X-ray range. The shape of reflected spectrum as well as Fe K line detected in hard X-rays require the reflecting medium to be mildly ionized (xi~500). We identify this reflector with the warm skin of the disk and we show that the heating of the skin is consistent with the classical alpha P_{tot} prescription, while alpha P_{gas} option is at least two orders of magnitude too low to provide the required heating. We find that the mass of the central black hole is relatively small (M_BH~10^7- 10^8 Msun, which is consistent with the Broad Line Region mapping results and characteristic for NLS1 class.Comment: 22 pages, 10 figures, accepted to Ap

    A Puzzling X-Ray Source Found in the chandra Deep Field South

    Full text link
    In this letter we report the detection of an extremely strong X-ray emission line in the 940ks chandra ACIS-I spectrum of CXO CDFS J033225.3-274219. The source was identified as a Type1 AGN at redshift of z = 1.617, with 2.0 -- 10.0 keV rest frame X-ray luminosity of ~ 10^44 ergs s^-1. The emission line was detected at 6.2^{+0.2}_{-0.1} keV, with an equivalent width (EW) of 4.4^{+3.2}_{-1.4} keV, both quantities referring to the observed frame. In the rest frame, the line is at 16.2^{+0.4}_{-0.3} keV with an EW of 11.5^{+8.3}_{-3.7} keV. An X-ray emission line at similar energy (~ 17 keV, rest frame) in QSO PKS 2149-306 was discovered before using ASCA data. We reject the possibility that the line is due to a statistical or instrumental artifact. The line is most likely due to blueshifted Fe-K emission from an relativistic outflow, probably an inner X-ray jet, with velocities of the order of ~ 0.6-0.7c. Other possible explanations are also discussed

    Precision Fe Kalpha and Fe Kbeta Line Spectroscopy of the Seyfert 1.9 Galaxy NGC 2992 with Suzaku

    Get PDF
    We present detailed time-averaged X-ray spectroscopy in the 0.5--10 keV band of the Seyfert~1.9 galaxy NGC 2992 with the Suzaku X-ray Imaging Spectrometers (XIS). We model the complex continuum in detail. There is an Fe K line emission complex that we model with broad and narrow lines and we show that the intensities of the two components are decoupled at a confidence level >3sigma. The broad Fe K line has an EW of 118 (+32,-61) eV and could originate in an accretion disk (with inclination angle greater than ~30 degrees). The narrow Fe Kalpha line has an EW of 163 (+47,-26) eV and is unresolved FWHM <4090 km/s) and likely originates in distant matter. The absolute flux in the narrow line implies that the column density out of the line-of-sight could be much higher than measured in the line-of-sight, and that the mean (historically-averaged) continuum luminosity responsible for forming the line could be a factor of several higher than that measured from the data. We also detect the narrow Fe Kbeta line with a high signal-to-noise ratio and describe a new robust method to constrain the ionization state of Fe responsible for the Fe Kalpha and Fe Kbeta lines that does not require any knowledge of possible gravitational and Doppler energy shifts affecting the line energies. For the distant line-emitting matter (e.g. the putative obscuring torus) we deduce that the predominant ionization state is lower than Fe VIII (at 99% confidence), conservatively taking into account residual calibration uncertainties in the XIS energy scale and theoretical and experimental uncertainties in the Fe K fluorescent line energies. From the limits on a possible Compton-reflection continuum it is likely that the narrow Fe Kalpha and Fe Kbeta lines originate in a Compton-thin structure.Comment: Abstract is abridged. Accepted for publication in the Suzaku special issue of PASJ (November 2006). 18 pages, 6 figure

    STIS Echelle Observations of the Seyfert Galaxy NGC 4151: Physical Conditions in the Ultraviolet Absorbers

    Get PDF
    We have examined the physical conditions in intrinsic UV-absorbing gas in the Seyfert galaxy NGC 4151, using echelle spectra obtained with the Space Telescope Imaging Spectrograph (STIS). We confirm the presence of the kinematic components detected in earlier GHRS observations as well as a new broad absorption feature at a radial velocity of -1680 km/s. The UV continuum of NGC 4151 decreased by a factor of 4 over the previous two years, and we argue the changes in the column density of the low ionization absorption lines associated with the broad component at -490 km/s reflect the decrease in the ionizing flux. Most of the strong absorption lines (e.g., N V, C IV, Si IV) from this component are saturated, but show substantial residual flux in their cores, indicating that the absorber does not fully cover the source of emission. Our interpretation is that the unocculted light is due to scattering by free electrons from an extended region, which reflects continuum, emission lines, and absorption lines. We have been able to constrain the densities for the kinematic components based on absorption lines from metastable states of C III and Fe II, and/or the ratios of ground and fine structure lines of O I,C II, and Si II. We have generated a set of photoionization models which match the ionic column densities for each component during the present low flux state and those seen in previous high flux states with the GHRS and STIS, confirming that the absorbers are photoionized and respond to the changes in the continuum flux. We have been able to map the relative radial positions of the absorbers, and find that the gas decreases in density with distance. None of the UV absorbers is of sufficiently large column density or high enough ionization state to account for the X-ray absorption.Comment: 46 pages (Latex), 14 figures (postscript), plus a landscape table (Latex), to appear in the Astrophysical Journa

    Optimal Concentration of Light in Turbid Materials

    Full text link
    In turbid materials it is impossible to concentrate light into a focus with conventional optics. Recently it has been shown that the intensity on a dyed probe inside a turbid material can be enhanced by spatially shaping the wave front of light before it enters a turbid medium. Here we show that this enhancement is due to concentration of light energy to a spot much smaller than a wavelength. We focus light on a dyed probe sphere that is hidden under an opaque layer. The light is optimally concentrated to a focus which does not exceed the smallest focal area physically possible by more than 68%. A comparison between the intensity enhancements of both the emission and excitation light supports the conclusion of optimal light concentration.Comment: We corrected an ambiguous description of the focus size in our abstract and text pointed out by an anonymous refere
    corecore