855 research outputs found
"Breakthrough" osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes
Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis.Peer ReviewedPostprint (published version
Implications of inhomogeneous distribution of concentration polarization for interpretation of pressure-driven
A number of CFD studies have demonstrated that there is a considerable inhomogeneity of extent of Concentration Polarization (CP) over the membrane surface especially in spacer-filled feed channels. However, the consequences of this inhomogeneity for the interpretation of measurements of solute rejection in pressure-driven membrane processes have received little attention.
This study uses a simple model of locally-1D CP combined with a postulated probability distribution of unstirred-layer thickness over the membrane thickness. In this way, we obtain transparent analytical results and can consider qualitative consequences of inhomogeneous distribution of CP over membrane surface. Our analysis shows that disregarding the CP distribution under-estimates the CP of strongly positively-rejected solutes and over-estimates the CP for the negatively-rejected ones. This observation is especially important for the interpretation of ion rejection from multi-ion solutions in nanofiltration where strong positive and pronounced negative rejections can occur simultaneously for solutes of different charges.
We conclude that for reliable interpretation of pressure-driven membrane measurements it is desirable to reduce the inhomogeneity of CP distribution to a minimum in membrane-testing devicesPeer ReviewedPostprint (author's final draft
Photoinduced 3D orientational order in side chain liquid crystalline azopolymers
We apply experimental technique based on the combination of methods dealing
with principal refractive indices and absorption coefficients to study the
photoinduced 3D orientational order in the films of liquid crystalline (LC)
azopolymers. The technique is used to identify 3D orientational configurations
of trans azobenzene chromophores and to characterize the degree of ordering in
terms of order parameters. We study two types of LC azopolymers which form
structures with preferred in-plane and out-of-plane alignment of
azochromophores, correspondingly. Using irradiation with the polarized light of
two different wavelengths we find that the kinetics of photoinduced anisotropy
can be dominated by either photo-reorientation or photoselection mechanisms
depending on the wavelength. We formulate the phenomenological model describing
the kinetics of photoinduced anisotropy in terms of the isomer concentrations
and the order parameter tensor. We present the numerical results for absorption
coefficients that are found to be in good agreement with the experimental data.
The model is also used to interpret the effect of changing the mechanism with
the wavelength of the pumping light.Comment: uses revtex4 28 pages, 10 figure
Річна динаміка психомоторних функцій учнів сьомих класів
Показники сенсомоторних функцій та нейродинамічних властивостей кращі в хлопчиків, але річна, динаміка, навпаки в дівчат. Отже, підтвердились літературні дані про те, що з віком нейродинамічні властивості покращуються
Transport in one dimensional Coulomb gases: From ion channels to nanopores
We consider a class of systems where, due to the large mismatch of dielectric
constants, the Coulomb interaction is approximately one-dimensional. Examples
include ion channels in lipid membranes and water filled nanopores in silicon
or cellulose acetate films. Charge transport across such systems possesses the
activation behavior associated with the large electrostatic self-energy of a
charge placed inside the channel. We show here that the activation barrier
exhibits non-trivial dependence on the salt concentration in the surrounding
water solution and on the length and radius of the channel.Comment: New references are have been added and discussed. 18 pages, 8 figure
Asymmetric electroosmotic pumping across porous media sandwiched with perforated ion-exchange membranes
To have non-zero net flow in AC electroosmotic pumps, the electroosmosis (EO) has to be non-linear and asymmetric. This can be achieved due to ionic concentration polarization. This is known to occur close to micro-/nano-interfaces provided that the sizes of the nanopores are not too large compared to the Debye screening length. However, operation of the corresponding EO pumps can be quite sensitive to the solution concentration and, thus, unstable in practical applications. Concentration polarization of ion-exchange membranes is much more robust. However, the hydraulic permeability of the membrane is very low, which makes EO flows through them extremely small. This communication shows theoretically how this problem can be resolved via making scarce microscopic perforations in an ion-exchange membrane and putting it in series with an EO-active nano-porous medium. The problem of coupled flow, concentration and electrostatic-potential distributions is solved numerically by using finite-element methods. This analysis reveals that even quite scarce perforations of micron-scale diameters are sufficient to observe practically-interesting EO flows in the system. If the average distance between the perforations is smaller than the thickness of the EO-active layer, there is an effective homogenization of the electrolyte concentration and hydrostatic pressure in the lateral direction at some distance from the interface. The simulations show this distance to be somewhat lower than the half-distance between the perforations. On the other hand, when the surface fraction of perforations is sufficiently small (below a fraction of a percent) this “homogeneous” concentration is considerably reduced (or increased, depending on the current direction), which makes the EO strongly non-linear and asymmetric. This analysis provides initial guidance for the design of high-productivity and inexpensive AC electroosmotic pumps.Peer ReviewedPostprint (published version
- …
