1,733 research outputs found
Modelling and Developing an Intelligent Road Lighting System Using Power-Line Communication
The development of a suitable system which will control street lighting ballasts depending on traffic flow, communicate data between each street light along the Power-Line and sense passing traffic. This paper offers the methodology of the system, environmental benefits, commercial benefits and safety benefits of such a unique system. It also shows topics that have been researched to date and potential future development paths this research could take
Recommended from our members
Tensile Response of Adhesively Bonded Composite-to-composite Single-lap Joints in the Presence of Bond Deficiency
This paper studies the quasi-static tensile response of adhesively bonded composite-to-composite single-lap joints in the presence of weak and kissing bonds, as an attempt for characterisation of bond deficiencies likely to occur in polymer composite bonded repair. Cytec FM®94 adhesive film (0.25 mm nominal thickness) was used for all joints to bond two 2mm-thickness carbon fibre polymer composite laminates manufactured from unidirectional Hexcel M21/T800S pre-pregs. Peel-ply surface treatment was used for all joints. The bonds were deteriorated via five methods: pre-curing the centre of bond area prior to the cure of the bond edges, increasing the curing temperature rate, reducing the curing time, and embedding PTFE films over the centre of the bond. For the last method, the studies were carried out by embedding PTFE films on one and two sides of the adhesive film. The bond deterioration was followed by non-destructive inspections using ultrasound C-scanning. The ultimate failure load of the joints with defected bonds (i.e. weak and kissing bonds) was measured and compared to that of the joints with no defect (i.e. good bonds). It was found that rapid curing and short-time curing reduces more than 50% of the load carrying capacity of the single-lap joins in tension while the joints with weak bonds introduced by pre-curing of a large area of the bond (>60%) can take up more than 65% of the ultimate load of the joint with good bond. Also, optical microscopy of the bond surfaces after failure showed changes in failure type for the rapid and short-time cure, strongly correlated with their significant failure load reduction
Impurity-Induced Bound Excitations on the Surface of Bi2Sr2CaCu2O8
We have probed the effects of atomic-scale impurities on superconductivity in
Bi_{2}Sr_{2}CaCu_{2}O_{8} by performing low-temperature tunneling spectroscopy
measurements with a scanning tunneling microscope. Our results show that
non-magnetic defect structures at the surface create localized low-energy
excitations in their immediate vicinity. The impurity-induced excitations occur
over a range of energies including the middle of the superconducting gap, at
the Fermi level. Such a zero bias state is a predicted feature for strong
non-magnetic scattering in a d-wave superconductor.Comment: 4 pages, revtex, 4 figures. To appear in Physical Review Letter
Recommended from our members
Mechanical performance of composite bonded joints in the presence of localised process-induced zero-thickness defects
Processing parameters and environmental conditions can introduce variation into the performance of adhesively bonded joints. The effect of such variation on the mechanical performance of the joints is not well understood. Moreover, there is no validated nondestructive inspection (NDI) available to ensure bond integrity post-process and in-service so as to guarantee initial and continued airworthiness in aerospace sector. This research studies polymer bond defects produced in the laboratory scale single-lap composite-to-composite joints that may represent the process-induced defects occurring in actual processing scenarios such as composite joining and repair in composite aircrafts. The effect of such defects on the degradation of a joint's mechanical performance is then investigated via quasi-static testing in conjunction with NDI ultrasonic C-scanning and pulsed thermography. This research is divided into three main sections: 1- manufacturing carbon fibre-reinforced composite joints containing representative nearly zero-thickness bond defects, 2- mechanical testing of the composite joints, and 3- assessment of the NDI capability for detection of the bond defects in such joints
Robust optimization over time by learning problem space characteristics
Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multi-population method in which sub-populations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms
M-atom conductance oscillations of a metallic quantum wire
The electron transport through a monoatomic metallic wire connected to leads
is investigated using the tight-binding Hamiltonian and Green's function
technique. Analytical formulas for the transmittance are derived and M-atom
oscillations of the conductance versus the length of the wire are found. Maxima
of the transmittance function versus the energy, for the wire consisted of N
atoms, determine the (N+1) period of the conductance. The periods of
conductance oscillations are discussed and the local and average quantum wire
charges are presented. The average charge of the wire is linked with the period
of the conductance oscillations and it tends to the constant value as the
length of the wire increases. For M-atom periodicity there are possible (M-1)
average occupations of the wire states.Comment: 8 pages, 5 figures. J.Phys.: Condens. matter (2005) accepte
Detection of electronic nematicity using scanning tunneling microscopy
Electronic nematic phases have been proposed to occur in various correlated
electron systems and were recently claimed to have been detected in scanning
tunneling microscopy (STM) conductance maps of the pseudogap states of the
cuprate high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We
investigate the influence of anisotropic STM tip structures on such
measurements and establish, with a model calculation, the presence of a
tunneling interference effect within an STM junction that induces
energy-dependent symmetry-breaking features in the conductance maps. We
experimentally confirm this phenomenon on different correlated electron
systems, including measurements in the pseudogap state of Bi-2212, showing that
the apparent nematic behavior of the imaged crystal lattice is likely not due
to nematic order but is related to how a realistic STM tip probes the band
structure of a material. We further establish that this interference effect can
be used as a sensitive probe of changes in the momentum structure of the
sample's quasiparticles as a function of energy.Comment: Accepted for publication (PRB - Rapid Communications). Main text (5
pages, 4 figures) + Supplemental Material (4 pages, 4 figures
Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se
Topological crystalline insulators represent a novel topological phase of
matter in which the surface states are protected by discrete point
group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy
is one possible realization of this phase which undergoes a topological phase
transition upon changing the lead content. We used scanning tunneling
microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe
the surface states on (001) PbSnSe in the topologically
non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed
quasiparticle interference with STM on the surface of the topological
crystalline insulator and demonstrated that the measured interference can be
understood from ARPES studies and a simple band structure model. Furthermore,
our findings support the fact that PbSnSe and PbSe have
different topological nature.Comment: 5 pages, 4 figure
Transport Properties of Carbon Nanotube C Peapods
We measure the conductance of carbon nanotube peapods from room temperature
down to 250mK. Our devices show both metallic and semiconducting behavior at
room temperature. At the lowest temperatures, we observe single electron
effects. Our results suggest that the encapsulated C molecules do not
introduce substantial backscattering for electrons near the Fermi level. This
is remarkable given that previous tunneling spectroscopy measurements show that
encapsulated C strongly modifies the electronic structure of a nanotube
away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one
orginally submitted as arXiv:cond-mat/0606258. The other one is
arXiv:0704.3641 [cond-mat
Melting of two dimensional solids on disordered substrate
We study 2D solids with weak substrate disorder, using Coulomb gas
renormalisation. The melting transition is found to be replaced by a sharp
crossover between a high liquid with thermally induced dislocations, and a
low glassy regime with disorder induced dislocations at scales larger than
which we compute (, the Larkin and
translational correlation lengths). We discuss experimental consequences,
reminiscent of melting, such as size effects in vortex flow and AC response in
superconducting films.Comment: 4 pages, uses RevTeX, Amssymb, multicol,eps
- …
