48,610 research outputs found
Quantum nonlocality of four-qubit entangled states
Quantum nonlocality of several four-qubit states is investigated by
constructing a new Bell inequality. These include the
Greenberger-Zeilinger-Horne (GHZ) state, W state, cluster state, and the state
that has been recently proposed in [PRL, {\bf 96}, 060502 (2006)]. The
Bell inequality is optimally violated by but not violated by the GHZ
state. The cluster state also violates the Bell inequality though not
optimally. The state can thus be discriminated from the cluster state
by using the inequality. Different aspects of four-partite entanglement are
also studied by considering the usefulness of a family of four-qubit mixed
states as resources for two-qubit teleportation. Our results generalize those
in [PRL, {\bf 72}, 797 (1994)].Comment: 13 pages, 1 figur
OH(A-X) fluorescence from photodissociative excitation of HO2 at 157.5 nm
The OH(A-X) fluorescence from photodissociative excitation of HO2 by F2 laser photons (157.5 nm) was observed and compared with the OH fluorescence spectra of H2O2 and the O2+CH3OH mixture. The rotational population distributions of OH(A) were obtained from the fluorescence spectra. The most populated levels are J = 4 for photodissociative excitation of HO2, J = 20 for H2O2, and J = 21 for the O2+CH3OH mixture. The fluorescence from the gas mixture is attributed to the O + H recombination for which the atoms are produced from photodissociation of parent molecules
Proper Scaling of the Anomalous Hall Effect
Working with epitaxial films of Fe, we succeeded in independent control of
different scattering processes in the anomalous Hall effect. The result
appropriately accounted for the role of phonons, thereby clearly exposing the
fundamental flaws of the standard plot of the anomalous Hall resistivity versus
longitudinal resistivity. A new scaling has been thus established that allows
an unambiguous identification of the intrinsic Berry curvature mechanism as
well as the extrinsic skew scattering and side-jump mechanisms of the anomalous
Hall effect.Comment: 5 pages, 4 figure
Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition
It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions
Nature vs. Nurture: Predictability in Low-Temperature Ising Dynamics
Consider a dynamical many-body system with a random initial state
subsequently evolving through stochastic dynamics. What is the relative
importance of the initial state ("nature") vs. the realization of the
stochastic dynamics ("nurture") in predicting the final state? We examined this
question for the two-dimensional Ising ferromagnet following an initial deep
quench from to . We performed Monte Carlo studies on the
overlap between "identical twins" raised in independent dynamical environments,
up to size . Our results suggest an overlap decaying with time as
with ; the same exponent holds for a
quench to low but nonzero temperature. This "heritability exponent" may equal
the persistence exponent for the 2D Ising ferromagnet, but the two differ more
generally.Comment: 5 pages, 3 figures; new version includes results for nonzero
temperatur
Magneto-electrostatic trapping of ground state OH molecules
We report the magnetic confinement of neutral, ground state hydroxyl radicals
(OH) at a density of cm and temperature of 30
mK. An adjustable electric field of sufficient magnitude to polarize the OH is
superimposed on the trap in either a quadrupole or homogenous field geometry.
The OH is confined by an overall potential established via molecular state
mixing induced by the combined electric and magnetic fields acting on the
molecule's electric dipole and magnetic dipole moments, respectively. An
effective molecular Hamiltonian including Stark and Zeeman terms has been
constructed to describe single molecule dynamics inside the trap. Monte Carlo
simulation using this Hamiltonian accurately models the observed trap dynamics
in various trap configurations. Confinement of cold polar molecules in a
magnetic trap, leaving large, adjustable electric fields for control, is an
important step towards the study of low energy dipole-dipole collisions.Comment: 4 pages, 4 figure
OH hyperfine ground state: from precision measurement to molecular qubits
We perform precision microwave spectroscopy--aided by Stark deceleration--to
reveal the low magnetic field behavior of OH in its ^2\Pi_{3/2} ro-vibronic
ground state, identifying two field-insensitive hyperfine transitions suitable
as qubits and determining a differential Lande g-factor of
1.267(5)\times10^{-3} between opposite parity components of the
\Lambda-doublet. The data are successfully modeled with an effective hyperfine
Zeeman Hamiltonian, which we use to make a tenfold improvement of the
magnetically sensitive, astrophysically important \Delta F=\pm1 satellite-line
frequencies, yielding 1720529887(10) Hz and 1612230825(15) Hz.Comment: 4+ pages, 3 figure
Giant microwave photoresistance of two-dimensional electron gas
We measure microwave frequency (4-40 GHz) photoresistance at low magnetic
field B, in high mobility 2D electron gas samples, excited by signals applied
to a transmission line fabricated on the sample surface. Oscillatory
photoresistance vs B is observed. For excitation at the cyclotron resonance
frequency, we find an unprecedented, giant relative photoresistance (\Delta
R)/R of up to 250 percent. The photoresistance is apparently proportional to
the square root of applied power, and disappears as the temperature is
increased.Comment: 4 pages, 3 figure
- …
