16,754 research outputs found
Suppression of collisional shifts in a strongly interacting lattice clock
Optical lattice clocks have the potential for extremely high frequency
stability owing to the simultaneous interrogation of many atoms, but this
precision may come at the cost of systematic inaccuracy due to atomic
interactions. Density-dependent frequency shifts can occur even in a clock that
uses fermionic atoms if they are subject to inhomogeneous optical excitation
[1, 2]. Here we present a seemingly paradoxical solution to this problem. By
dramatically increasing the strength of atomic interactions, we suppress
collisional shifts in lattice sites containing > 1 atoms; strong
interactions introduce an energy splitting into the system, and evolution into
a many-particle state in which collisions occur is inhibited. We demonstrate
the effectiveness of this approach with the JILA Sr lattice clock by reducing
both the collisional frequency shift and its uncertainty by more than a factor
of ten [3], to the level of . This result eliminates the compromise
between precision and accuracy in a many-particle system, since both will
continue to improve as the particle number increases.Comment: 13 pages, 6 figure
Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential
The method of synthetic gauge potentials opens up a new avenue for our
understanding and discovering novel quantum states of matter. We investigate
the topological quantum phase transition of Fermi gases trapped in a honeycomb
lattice in the presence of a synthetic non- Abelian gauge potential. We develop
a systematic fermionic effective field theory to describe a topological quantum
phase transition tuned by the non-Abelian gauge potential and ex- plore its
various important experimental consequences. Numerical calculations on lattice
scales are performed to compare with the results achieved by the fermionic
effective field theory. Several possible experimental detection methods of
topological quantum phase tran- sition are proposed. In contrast to condensed
matter experiments where only gauge invariant quantities can be measured, both
gauge invariant and non-gauge invariant quantities can be measured by
experimentally generating various non-Abelian gauges corresponding to the same
set of Wilson loops
Analysis of Power-aware Buffering Schemes in Wireless Sensor Networks
We study the power-aware buffering problem in battery-powered sensor
networks, focusing on the fixed-size and fixed-interval buffering schemes. The
main motivation is to address the yet poorly understood size variation-induced
effect on power-aware buffering schemes. Our theoretical analysis elucidates
the fundamental differences between the fixed-size and fixed-interval buffering
schemes in the presence of data size variation. It shows that data size
variation has detrimental effects on the power expenditure of the fixed-size
buffering in general, and reveals that the size variation induced effects can
be either mitigated by a positive skewness or promoted by a negative skewness
in size distribution. By contrast, the fixed-interval buffering scheme has an
obvious advantage of being eminently immune to the data-size variation. Hence
the fixed-interval buffering scheme is a risk-averse strategy for its
robustness in a variety of operational environments. In addition, based on the
fixed-interval buffering scheme, we establish the power consumption
relationship between child nodes and parent node in a static data collection
tree, and give an in-depth analysis of the impact of child bandwidth
distribution on parent's power consumption.
This study is of practical significance: it sheds new light on the
relationship among power consumption of buffering schemes, power parameters of
radio module and memory bank, data arrival rate and data size variation,
thereby providing well-informed guidance in determining an optimal buffer size
(interval) to maximize the operational lifespan of sensor networks
Classification and nondegeneracy of Toda system with singular sources
We consider the following Toda system \Delta u_i + \D \sum_{j = 1}^n
a_{ij}e^{u_j} = 4\pi\gamma_{i}\delta_{0} \text{in}\mathbb R^2, \int_{\mathbb
R^2}e^{u_i} dx -1\delta_0a_{ij}\gamma_i=0\forall \;1\leq i\leq n\gamma_i+\gamma_{i+1}+...+\gamma_j \notin \mathbb Z1\leq i\leq
j\leq nu_i$ is \textit{radially symmetric} w.r.t. 0.
(iii) We prove that the linearized equation at any solution is
\textit{non-degenerate}. These are fundamental results in order to understand
the bubbling behavior of the Toda system.Comment: 28 page
Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals
Motivated by a recent experiment on acoustic lenses, we perform numerical
calculations based on a multiple scattering technique to investigate the
focusing of acoustic waves with sonic crystals formed by rigid cylinders in
air. The focusing effects for crystals of various shapes are examined. The
dependance of the focusing length on the filling factor is also studied. It is
observed that both the shape and filling factor play a crucial role in
controlling the focusing. Furthermore, the robustness of the focusing against
disorders is studied. The results show that the sensitivity of the focusing
behavior depends on the strength of positional disorders. The theoretical
results compare favorably with the experimental observations, reported by
Cervera, et al. (Phys. Rev. Lett. 88, 023902 (2002)).Comment: 8 figure
Biharmonic Riemannian submersions from 3-manifolds
An important theorem about biharmonic submanifolds proved independently by
Chen-Ishikawa [CI] and Jiang [Ji] states that an isometric immersion of a
surface into 3-dimensional Euclidean space is biharmonic if and only if it is
harmonic (i.e, minimal). In a later paper [CMO2], Cadeo-Monttaldo-Oniciuc shown
that the theorem remains true if the target Euclidean space is replaced by a
3-dimensional hyperbolic space form. In this paper, we prove the dual results
for Riemannian submersions, i.e., a Riemannian submersion from a 3-dimensional
space form of non-positive curvature into a surface is biharmonic if and only
if it is harmonic
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
- …
