13 research outputs found

    Knowledge mapping concerning applications of nanocomposite hydrogels for drug delivery: A bibliometric and visualized study (2003–2022)

    Get PDF
    Background: Nanocomposite Hydrogels (NHs) are 3D molecular networks formed by physically or covalently crosslinking polymer with nanoparticles or nanostructures, which are particularly suitable for serving as carriers for drug delivery systems. Many articles pertaining to the applications of Nanocomposite Hydrogels for drug delivery have been published, however, the use of bibliometric and visualized analysis in this area remains unstudied. The purpose of this bibliometric study intended to comprehensively analyze the knowledge domain, research hotspots and frontiers associated with the applications of Nanocomposite Hydrogels for drug delivery.Methods: We identified and retrieved the publications concerning the applications of NHs for drug delivery between 2003 and 2022 from Web of Science Core Collection Bibliometric and visualized analysis was utilized in this investigative study.Results: 631 articles meeting the inclusion criteria were identified and retrieved from WoSCC. Among those, 2,233 authors worldwide contributed in the studies, accompanied by an average annual article increase of 24.67%. The articles were co-authored by 764 institutions from 52 countries/regions, and China published the most, followed by Iran and the United States. Five institutions published more than 40 papers, namely Univ Tabriz (n = 79), Tabriz Univ Med Sci (n = 70), Islamic Azad Univ (n = 49), Payame Noor Univ (n = 42) and Texas A&M Univ (n = 41). The articles were published in 198 journals, among which the International Journal of Biological Macromolecules (n = 53) published the most articles, followed by Carbohydrate Polymers (n = 24) and ACS Applied Materials and Interfaces (n = 22). The top three journals most locally cited were Carbohydrate Polymers, Biomaterials and Advanced materials. The most productive author was Namazi H (29 articles), followed by Bardajee G (15 articles) and Zhang J (11 articles) and the researchers who worked closely with other ones usually published more papers. “Doxorubicin,” “antibacterial” and “responsive hydrogels” represent the current research hotspots in this field and “cancer therapy” was a rising research topic in recent years. “(cancer) therapeutics” and “bioadhesive” represent the current research frontiers.Conclusion: This bibliometric and visualized analysis offered an investigative study and comprehensive understanding of publications regarding the applications of Nanocomposite Hydrogels for drug delivery from 2003 to 2022. The outcome of this study would provide insights for researchers in the field of Nanocomposite Hydrogels applications for drug delivery

    Learning Physical-Spatio-Temporal Features for Video Shadow Removal

    No full text
    Shadow removal in a single image has received increasing attention in recent years. However, removing shadows over dynamic scenes remains largely under-explored. In this paper, we propose the first data-driven video shadow removal model, termed PSTNet, by exploiting three essential characteristics of video shadows, i.e., physical property, spatio relation, and temporal coherence. Specifically, a dedicated physical branch was established to conduct local illumination estimation, which is more applicable for scenes with complex lighting and textures, and then enhance the physical features via a mask-guided attention strategy. Then, we develop a progressive aggregation module to enhance the spatio and temporal characteristics of features maps, and effectively integrate the three kinds of features. Furthermore, to tackle the lack of datasets of paired shadow videos, we synthesize a dataset (SVSRD-85) with aid of the popular game GTAV by controlling the switch of the shadow renderer. Experiments against 9 state-of-the-art models, including image shadow removers and image/video restoration methods, show that our method improves the best SOTA in terms of RMSE error for the shadow area by 14.7%. In addition, we develop a lightweight model adaptation strategy to make our synthetic-driven model effective in real world scenes. The visual comparison on the public SBU-TimeLapse dataset verifies the generalization ability of our model in real scenes

    Knowledge mapping concerning applications of nanocomposite hydrogels for drug delivery: A bibliometric and visualized study (2003–2022)

    No full text
    Background: Nanocomposite Hydrogels (NHs) are 3D molecular networks formed by physically or covalently crosslinking polymer with nanoparticles or nanostructures, which are particularly suitable for serving as carriers for drug delivery systems. Many articles pertaining to the applications of Nanocomposite Hydrogels for drug delivery have been published, however, the use of bibliometric and visualized analysis in this area remains unstudied. The purpose of this bibliometric study intended to comprehensively analyze the knowledge domain, research hotspots and frontiers associated with the applications of Nanocomposite Hydrogels for drug delivery.Methods: We identified and retrieved the publications concerning the applications of NHs for drug delivery between 2003 and 2022 from Web of Science Core Collection Bibliometric and visualized analysis was utilized in this investigative study.Results: 631 articles meeting the inclusion criteria were identified and retrieved from WoSCC. Among those, 2,233 authors worldwide contributed in the studies, accompanied by an average annual article increase of 24.67%. The articles were co-authored by 764 institutions from 52 countries/regions, and China published the most, followed by Iran and the United States. Five institutions published more than 40 papers, namely Univ Tabriz (n = 79), Tabriz Univ Med Sci (n = 70), Islamic Azad Univ (n = 49), Payame Noor Univ (n = 42) and Texas A&amp;amp;M Univ (n = 41). The articles were published in 198 journals, among which the International Journal of Biological Macromolecules (n = 53) published the most articles, followed by Carbohydrate Polymers (n = 24) and ACS Applied Materials and Interfaces (n = 22). The top three journals most locally cited were Carbohydrate Polymers, Biomaterials and Advanced materials. The most productive author was Namazi H (29 articles), followed by Bardajee G (15 articles) and Zhang J (11 articles) and the researchers who worked closely with other ones usually published more papers. “Doxorubicin,” “antibacterial” and “responsive hydrogels” represent the current research hotspots in this field and “cancer therapy” was a rising research topic in recent years. “(cancer) therapeutics” and “bioadhesive” represent the current research frontiers.Conclusion: This bibliometric and visualized analysis offered an investigative study and comprehensive understanding of publications regarding the applications of Nanocomposite Hydrogels for drug delivery from 2003 to 2022. The outcome of this study would provide insights for researchers in the field of Nanocomposite Hydrogels applications for drug delivery.</jats:p

    The Influence of College Students’ Innovation and Entrepreneurship Intention in the Art Field of Art Film and Television Appreciation by Deep Learning Under Entrepreneurial Psychology

    No full text
    There are many films and televisions (FATs) on the Internet, but the quality is uneven. This study explores the ability of college students to screen good films and resist bad films in television works in such a large environment. In the deep learning model of FAT, the ability of college students to think about the ideas expressed and the degree of influence on college students’ values are analyzed. Based on this conceptual basis, a questionnaire is designed for the intention and influencing factors of college students’ FAT innovation and entrepreneurship. It reflects the influence of concentration on FAT learning, the cognitive level of deep learning, the ability to process deep learning ideas, the feeling of the teaching process, and the process of self-learning, which all positively impact college students’ FAT entrepreneurial intentions. The importance of innovative deep learning is highlighted, which proves that a good deep learning course guidance method can improve students’ interest and ability and provide a reference for relevant colleges and universities to cultivate pertinent talents of the field of FAT.</jats:p

    Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus

    No full text
    Abstract Background Brassica napus is an important vegetable oil source worldwide. Seed coat content is a complex quantitative trait that negatively correlates with the seed oil content in B. napus. Results Here we provide insights into the genetic basis of natural variation of seed coat content by transcriptome-wide association studies (TWAS) and genome-wide association studies (GWAS) using 382 B. napus accessions. By population transcriptomic analysis, we identify more than 700 genes and four gene modules that are significantly associated with seed coat content. We also characterize three reliable quantitative trait loci (QTLs) controlling seed coat content by GWAS. Combining TWAS and correlation networks of seed coat content-related gene modules, we find that BnaC07.CCR-LIKE (CCRL) and BnaTT8s play key roles in the determination of the trait by modulating lignin biosynthesis. By expression GWAS analysis, we identify a regulatory hotspot on chromosome A09, which is involved in controlling seed coat content through BnaC07.CCRL and BnaTT8s. We then predict the downstream genes regulated by BnaTT8s using multi-omics datasets. We further experimentally validate that BnaCCRL and BnaTT8 positively regulate seed coat content and lignin content. BnaCCRL represents a novel identified gene involved in seed coat development. Furthermore, we also predict the key genes regulating carbon allocation between phenylpropane compounds and oil during seed development in B. napus. Conclusions This study helps us to better understand the complex machinery of seed coat development and provides a genetic resource for genetic improvement of seed coat content in B. napus breeding. </jats:sec

    Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway

    No full text
    AbstractRhomboid proteins perform a wide range of important functions in a variety of organisms. Recent studies have revealed that rhomboid proteins are involved in human cancer progression; however, the underlying molecular mechanism remains largely unclear. Here we show that RHBDD1, a rhomboid intramembrane serine protease, is highly expressed and closely associated with survival in patients with colorectal cancer. We observe that inactivation of RHBDD1 decreases tumor cell growth. Further studies show that RHBDD1 interacts with proTGFα and induces the ADAM-independent cleavage and secretion of proTGFα. The secreted TGFα further triggers the activation of the EGFR/Raf/MEK/ERK signalling pathway. Finally, the positive correlation of RHBDD1 expression with the EGFR/Raf/MEK/ERK signalling pathway is further corroborated in a murine model of colitis-associated colorectal cancer. These findings provide evidence of a growth-promoting role for RHBDD1 in colorectal cancer and may aid the development of tumor biomarkers or antitumor therapeutics.</jats:p
    corecore