30,140 research outputs found
Distribution networks and electrically controllable couplers for integrated optics
The power distribution as a function of propagation distance in a network of coupled optical waveguides is determined for several interesting cases. An electrically controllable coupler is proposed and analyzed in detail. High efficiency coupling and decoupling between two optical guides can be accomplished with the use of an electrooptically generated dynamic channel, of finite length, located in between the two guides
The science and technology of condensed matter physics - from atomic imaging to space research
Various areas of our ongoing condensed matter physics research which involve both fundamental physics and advanced technology are described. The research topics include studies of the vortex dynamics and pairing symmetry of high-temperature superconductors; development of precision clocks using high-Q superconducting microwave cavities; state-of-the-art measurements of the density and critical phenomena of liquid helium near phase transitions and under microgravity; as well as the physics and device applications of various magnetoresistive perovskites. The experimental scope encompasses techniques from atomic imaging to space research, and the important interplay of fundamental science and frontier technology in our research is also addressed
Recent Advances in High-Temperature Superconductivity
Recent experimental and theoretical developments in high-temperature
superconductivity are reviewed, and the empirically asymmetric behavior between
hole-doped and electron-doped cuprates is contrasted. A number of phenomena
previously considered as essential for the formation of cuprate
superconductivity, such as the pairing symmetry, pseudogap phenomenon, gapped
incommensurate spin fluctuations and charged stripes, are found to be
non-universal, and are likely the consequence of competing orders. It is
suggested that the only ubiquitous properties among all cuprates are the strong
electronic correlation and antiferromagnetic spin interaction in the CuO2
planes.Comment: 24 pages, 17 figures, 166 references. Review article, to appear in
the Bulletin of Associations of Asia Pacific Physical Societies (AAPPS), Vol.
12. Contact author: Nai-Chang Yeh (e-mail: [email protected]
Non-universal pairing symmetry and pseudogap phenomena in hole- and electron-doped cuprate superconductors
Experimental studies of the pairing state of cuprate superconductors reveal asymmetric behaviors of the hole-doped (p-type) and electron-doped (n-type) cuprates. The pairing symmetry, pseudogap phenomenon, low-energy spin excitations and the spatial homogeneity of the superconducting order parameter appear to be non-universal among the cuprates, which may be attributed to competing orders. We propose that the non-universal pseudogap and nano-scale variations in the quasiparticle spectra may be the result of a charge nematic (CN) phase stabilized by disorder in highly two-dimensional (2D) p-type cuprates. The CN phase is accompanied by gapped spin excitations and competes with superconductivity (SC). In contrast, gapless spin excitations may be responsible for the absence of pseudogap and the presence of excess sub-gap spectral weight in the momentum-independent quasiparticle spectra of n-type cuprates. The physical implications and further verifications for these conjectures are discussed
Collective modes and quasiparticle interference on the local density of states of cuprate superconductors
The energy, momentum, and temperature dependence of the quasiparticle local density of states (LDOS) of a two-dimensional d(x2)-(y2)-wave superconductor with random disorder is investigated using the first-order T-matrix approximation. The results suggest that collective modes such as spin-charge-density waves are relevant low-energy excitations of the cuprates that contribute to the observed LDOS modulations in recent scanning tunneling microscopy studies of Bi2Sr2CaCu2Ox
Microstructure of hot-pressed Al2O3-Si3N4 mixtures as a function of holding temperature
Powder mixtures of 40 m/o Si3N4-60 m/o Al2O3 were hot-pressed at 4000 psi at various holding temperatures from 1100 C to 1700 C. Scanning Electron Microscopy and Transmission Electro Microscopy results were correlated to X-ray phase analysis and density measurements. The progressively developed microstructure was used to interpret the densification behavior of SiAlON. Photomicrographs of microstructures are shown
Mode conversion in periodically disturbed thin‐film waveguides
Mode conversion in a periodically perturbed thin‐film optical waveguide is studied in detail. Three different types of perturbations are considered: periodic index of refraction of the film, periodic index of refraction of the substrate, and periodic boundary. The applications in filters, mode converters, and distributed feedback lasers are discussed
Fiber distributed feedback laser
Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs
Periodic structures in integrated optics
Thin‐film dielectric waveguides with a periodic refractive index, a periodic substrate, or periodic surface are studied. The field is determined from Maxwell's equations using Floquet's theorem. The Brillouin diagram and the interaction regions are investigated. The bandwidth and the attenuation coefficients of the interaction regions are given as a function of the optical wavelength. A number of applications in active and passive integrated optics systems are discussed
Recommended from our members
Length summation in noise
To investigate the effect of background noise on visual summation, we measured the contrast detection thresholds for targets with or without a white noise mask in luminance contrast. The targets were Gabor patterns placed at 3° eccentricity to either the left or right of the fixation and elongated along an arc of the same radius to ensure equidistance from fixation for every point along the long axis. The task was a spatial two-alternative forced-choice (2AFC) paradigm in which the observer had to indicate whether the target was on the left or the right of the fixation. The threshold was measured at 75% accuracy with a staircase procedure. The detection threshold decreased with target length with slope −1/2 on log-log coordinates for target lengths between 30′ and 300′ half-height full-width (HHFW), defining a range of ideal matched-filter summation extending up to about 200′ (or about 16× the center width of the Gabor targets). The summation curves for different noise contrasts were shifted copies of each other. For the threshold versus mask contrast (TvN) functions, the target threshold was constant for noise levels up to about −22 dB, then increased with noise contrast to a linear asymptote on log-log coordinates. Since the “elbow” of the target threshold versus noise function is an index of the level of the equivalent noise experienced by the visual system during target detection, our results suggest that the signal-to-noise ratio was invariant with target length. We further show that a linear-nonlinear-linear gain-control model can fully account for these results with far fewer parameters than a matched-filter model
- …
