81 research outputs found
Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea
A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study
Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts
Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue
Colorful Niches of Phytoplankton Shaped by the Spatial Connectivity in a Large River Ecosystem: A Riverscape Perspective
Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and–despite increasing interest in large-river studies–riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river’s photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM) and non-algal material (tripton). CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances) at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous river ecosystems and a promising tool to study autotrophic functional properties. It confirms the usefulness of using the riverscape approach to study large-river ecosystems and initiate comparison along latitudinal gradients
Contrasted Effects of Diversity and Immigration on Ecological Insurance in Marine Bacterioplankton Communities
The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local “physiological insurance” may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations
Sensitivity of Calcification to Thermal Stress Varies among Genera of Massive Reef-Building Corals
Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm−2 year−1 in Porites spp. and 0.12 g cm−2 year−1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ωar) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ωar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown, seriously affecting ecosystem function in Atlantic reefs
Global gradients of coral exposure to environmental stresses and implications for local management
Background: The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple
environmental stressors to estimate vulnerability and evaluate potential counter-measures.
Methodology/Principal Findings: This study combined global spatial gradients of coral exposure to radiation stress factors
(temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing
factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where
exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions
between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial
ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and
reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group
into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress
scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress
scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed
regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central
Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress.
Conclusions/Significance: Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be
reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management
efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions
are achieved through global negotiations
Recolonisation of new habitats by meiobenthic organisms in the deep Arctic Ocean: an experimental approach
Commercial exploitation and abrupt changes of the natural conditions may have
severe impacts on the Arctic deep-sea ecosystem. The present recolonisation
experiment mimicked a situation after a catastrophic disturbance (e.g. by turbidites
caused by destabilized continental slopes after methane hydrate decomposition) and
investigated if the recolonisation of a deep-sea habitat by meiobenthic organisms is
fostered by variations innutrition and/or sediment structure. Two "Sediment Tray Free
Vehicles" were deployed for one year in summer 2003 at 2500 m water depth in the
Arctic deep-sea in the eastern Fram Strait. The recolonisation trays were filled with
different artificial and natural sediment types (glass beads, sand, sediment mixture,
pure deep-sea sediment) and were enriched with various types of food (algae, yeast,
fish). After one year, meiobenthos abundances and various sediment related
environmental parameters were investigated. Foraminifera were generally the most
successful group: they dominated all treatments and accounted for about 87% of the
total meiobenthos. Colonizing meiobenthos specimens were generally smaller
compared to those in the surrounding deep-sea sediment, suggesting an active
recolonisation by juveniles. Although experimental treatments with fine-grained, algaeenriched
sediment showed abundances closest to natural conditions, the results
suggest that food availability was the main determining factor for a successful
recolonisation by meiobenthos and the structure of recolonised sediments was shown
to have a subordinate influence
- …
