939 research outputs found
Three-dimensional microstructured lattices for oil sensing
Monitoring
of environmental contamination, including oil pollution,
is important to protect marine ecosystems. A wide range of sensors
are used in the petroleum industry to measure various parameters,
such as viscosity, pressure, and flow. Here, we create an optical
lattice mesh structure that can be used as an oil sensor integrated
with optical fiber probing. The principle of operation of the sensor
was based on light scattering, where the tested medium acted as a
diffuser. Three different mesh-patterned structures were analyzed
by optical imaging, light transmission, and scattering in the presence
of supercut, diesel, and stroke oil types. The meshes were used as
a medium for different types of oils, and the optical diffusion and
transmission were studied in the visible spectrum. Angle-resolved
measurements were carried out to characterize the light scattering
behavior from the mesh structures. Different types of oils were identified
on the basis of the optical behavior of the lattice structure. The
fabricated mesh structures can be used as a low-cost measurement device
in oil sensing
Identity, reputation and social interaction with an application to sequential voting
We analyze binary choices in a random utility model assuming that the agent's preferences are affected by conformism (with respect to the behavior of the society) and coherence (with respect to his identity). We apply the analysis to sequential voting when voters like to win
Toward biomaterial-based implantable photonic devices
Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.
Keywords: biomaterials; biocompatible; biodegradable; optics; photonicsUnited States. Department of Defense (Award FA9550-13-1-0068)National Institutes of Health (U.S.) (Award P41-EB015903)National Institutes of Health (U.S.) (Award R01-CA192878)National Science Foundation (U.S.) (Award CBET-1264356)National Science Foundation (U.S.) (Award ECCS-1505569
Advances in Microfluidics and Lab-on-a-Chip Technologies
Advances in molecular biology are enabling rapid and efficient analyses for
effective intervention in domains such as biology research, infectious disease
management, food safety, and biodefense. The emergence of microfluidics and
nanotechnologies has enabled both new capabilities and instrument sizes
practical for point-of-care. It has also introduced new functionality, enhanced
sensitivity, and reduced the time and cost involved in conventional molecular
diagnostic techniques. This chapter reviews the application of microfluidics
for molecular diagnostics methods such as nucleic acid amplification,
next-generation sequencing, high resolution melting analysis, cytogenetics,
protein detection and analysis, and cell sorting. We also review microfluidic
sample preparation platforms applied to molecular diagnostics and targeted to
sample-in, answer-out capabilities
Laser Nanopatterning of Colored Ink Thin Films for Photonic Devices
Nanofabrication through conventional methods such as electron beam writing and photolithography is time-consuming, high cost, complex, and limited in terms of the materials which can be processed. Here, we present the development of a nanosecond Nd:YAG laser (532 nm, 220 mJ) in holographic Denisyuk reflection mode method for creating ablative nanopatterns from thin films of four ink colors (black, red, blue, and brown). We establish the use of ink as a recording medium in different colors and absorption ranges to rapidly produce optical nanostructures in 1D geometries. The gratings produced with four different types of ink had the same periodicity (840 nm); however, they produce distant wavelength dependent diffraction responses to monochromatic and broadband light. The nanostructures of gratings consisting of blue and red inks displayed high diffraction efficiency of certain wavelengths while the black and brown ink based gratings diffracted broadband light. These gratings have high potential to be used as low-cost photonic structures in wavelength-dependent optical filters. We anticipate that the rapid production of gratings based on different ink formulations can enable optics applications such as holographic displays in data storage, light trapping, security systems, and sensors
Recommended from our members
Holographic Point-of-Care Diagnostic Devices
Developing non-invasive and accurate diagnostics that are easily manufactured, robust and reusable will provide monitoring of high-risk individuals in any clinical or point-of-care environment, particularly in the developing world. There is currently no rapid, low-cost and generic sensor fabrication technique capable of producing narrow-band, uniform, reversible colorimetric readouts with a high-tuneability range. This thesis aims to present a theoretical and experimental basis for the rapid fabrication, optimisation and testing of holographic sensors for the quantification of pH, organic solvents, metal cations, and glucose in solutions. The sensing mechanism was computationally modelled to optimise its optical characteristics and predict the readouts. A single pulse of a laser (6 ns, 532 nm, 350 mJ) in holographic “Denisyuk” reflection mode allowed rapid production of sensors through silver-halide chemistry, in situ particle size reduction and photopolymerisation. The fabricated sensors consisted of off-axis Bragg diffraction gratings of ordered silver nanoparticles and localised refractive index changes in poly(2-hydroxyethyl methacrylate) and polyacrylamide films. The sensors exhibited reversible Bragg peak shifts, and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 500-1100 nm. The application of the holographic sensors was demonstrated by sensing pH in artificial urine over the physiological range (4.5-9.0), with a sensitivity of 48 nm/pH unit between pH 5.0 and 6.0. For sensing metal cations, a porphyrin derivative was synthesised to act as the crosslinker, the light absorbing material, the component of a diffraction grating, as well as the cation chelating agent. The sensor allowed reversible quantification of Cu2+ and Fe2+ ions (50 mM - 1 M) with a response time within 50 s. Clinical trials of a glucose sensor in the urine samples of diabetic patients demonstrated that the glucose sensor has an improved performance compared to a commercial high-throughput urinalysis device. The experimental sensitivity of the glucose sensor exhibited a limit of detection of 90 µM, and permitted diagnosis of glucosuria up to 350 mM. The sensor response was achieved within 5 min and the sensor could be reused about 400 times without compromising its accuracy. Holographic sensors were also tested in flake form, and integrated with paper-iron oxide composites, dyed filter and chromatography papers, and nitrocellulose-based test strips. Finally, a generic smartphone application was developed and tested to quantify colorimetric tests for both Android and iOS operating systems. The developed sensing platform and the smartphone application have implications for the development of low-cost, reusable and equipment-free point-of-care diagnostic devices
Deep learning-enabled technologies for bioimage analysis.
Deep learning (DL) is a subfield of machine learning (ML), which has recently demonstrated its potency to significantly improve the quantification and classification workflows in biomedical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases
Ophthalmic sensing technologies for ocular disease diagnostics
Point-of-care diagnosis and personalized treatments are critical in ocular physiology and disease. Continuous sampling of tear fluid for ocular diagnosis is a need for further exploration. Several techniques have been developed for possible ophthalmological applications, from traditional spectroscopies to wearable sensors. Contact lenses are commonly used devices for vision correction, as well as for other therapeutic and cosmetic purposes. They are increasingly being developed into ocular sensors, being used to sense and monitor biochemical analytes in tear fluid, ocular surface temperature, intraocular pressure, and pH value. These sensors have had success in detecting ocular conditions, optimizing pharmaceutical treatments, and tracking treatment efficacy in point-of-care settings. However, there is a paucity of new and effective instrumentation reported in ophthalmology. Hence, this review will summarize the applied ophthalmic technologies for ocular diagnostics and tear monitoring, including both conventional and biosensing technologies. Besides applications of smart readout devices for continuous monitoring, targeted biomarkers are also discussed for the convenience of diagnosis of various ocular diseases. A further discussion is also provided for future aspects and market requirements related to the commercialization of novel types of contact lens sensors
- …
