648 research outputs found
Gold in Turkey - a missing link in Tethyan metallogeny
The gold metallogeny of Turkey constitutes a sector of the Tethyan Eurasian Metallogenic Belt (TEMB) within the Alpine-Himalayan orogenic system that formed from Jurassic-Cretaceous to the present. This orogenic system produced many different types of deposits related to subduction, collision, post-collision and rifting processes. Gold deposits, as well as other mineral deposits of Turkey, are mainly concentrated in Late Mesozoic and Tertiary rocks. Evaluation of the gold metallogeny of Turkey is based on a GIS database compilation of known gold deposits and prospects. Currently available data show that Turkey has a gold endowment, including reserves and resources, of approximately 31.5 M oz [979 tonnes] in 51 deposits, 21 of which contain more than 0.2 M oz gold. The other 30 deposits contain a total of approximately 1 M oz [31 tonnes] gold resources. Two recent discoveries, Kisladag and Copler, currently contain total resources of 17.6 M oz Au [549 tonnes], more than 50% of the total Turkish gold endowment. Turkey possesses a wide spectrum of gold deposits related to Mesozoic and Cenozoic volcanoplutonic arcs. However, porphyry gold (copper), epithermal gold (including both high- and low-sulfidation styles), and gold-rich volcanic-associated massive sulfide (including both Kuroko- and Cyprus-types) are the most economically important to date. Orogenic gold, including listwanite-hosted, placer gold and skam-hosted gold are relatively less important or abundant deposit types. Other potential gold systems for exploration include Carlin-type gold, detachment-fault-related gold, iron oxide-copper-gold, and gold in carbonate-replacement and manganese deposits. (c) 2005 Elsevier B.V. All rights reserved
Recommended from our members
Somatic PDGFRB activating variants in fusiform cerebral aneurysms
The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor β gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors
Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend, Nevada
The Gold Bar district contains five Carlin-type gold deposits and four resources for a combined gold endowment of 1.6 M oz [50 t]. The gold deposits are hosted in Devonian carbonate rocks below parautochthonous and allochthonous Paleozoic siliciclastic rocks emplaced during the Early Mississippian Antler orogeny. The district is in the Battle Mountain-Eureka trend, a long-lived structural feature that localized intrusions and ore deposits of different types and ages. The whole-rock geochemistry of four different mineralized and unmineralized Devonian carbonate rock units (two favorable and two unfavorable) were determined and interpreted in the context of the regional geology. A combination of basic statistics, R-mode factor analysis, isocon plots, and alteration diagrams were utilized to (1) identify favorable geochemical attributes of the host rocks, (2) characterize alteration and associated element enrichments and depletions, and (3) identify the mechanism of gold precipitation. This approach also led to the recognition of other types of alteration and mineralization in host rocks previously thought to be solely affected by Carlin-type mineralization. Unit 2 of the Upper Member of the Denay Formation, with the highest Al2O3, Fe2O3 and SiO2 contents and the lowest CaO content, is the most favorable host rock. Based on the high regression coefficients of data arrays on X-Y plots that project toward the origin, Al2O3 and TiO2 were immobile and K2O and Fe2O3 were relatively immobile during alteration and mineralization. Specific element associations identified by factor analysis are also prominent on isocon diagrams that compare the composition of fresh and altered equivalents of the same rock units. The most prominent associations are: Au, As, Sb, SiO2, Tl, -CaO and -LOI, the main gold mineralizing event and related silicification and decalcification; Cd, Zn, Ag, P, Ni and Tl, an early base metal event; and MgO, early dolomitization. Alteration diagrams, consisting of X-Y plots of SiO2/Al2O3, K2O/ Al2O3, CO2/Al2O3, [S/Al2O3]/[FC2O3/Al2O3], provide evidence for progressive silicification, decarbonation (decalcification and dedolomitization), argillization (illite), and sulfidation as a function of gold mineralization. The latter process is identified as the principal mechanism of gold precipitation. The lithogeochemistry of the ores in the Gold Bar district is typical of that documented in classic Carlin-type gold deposits in the region, but the size of the deposits and the intensity of alteration and mineralization are less. The presence of other types of mineralization in the Gold Bar district is also common to most of the other Carlin-type districts located in major mineral belts. The approach used in this study is well suited to the interpretation of multi-element geochemical data from other study areas with superimposed alteration and mineralization. (C) 2002 Elsevier Science B.V. All rights reserved
Effect of micronized zeolite addition to lamb concentrate feeds on growth performance and some blood chemistry and metabolites
This study was conducted to determine the effects of the addition of micronized zeolite (MZ) on the fattening performance, blood parameters, faecal ash and nitrogen levels of lambs fed concentrate feeds intensively. For two months 25 four-month-old Merino x Ile de France crossbred male lambs (21.1 ± 1.32 kg live weight) were fed 100 g alfalfa hay and a mixed concentrate diet containing 0%, 1%, 2% or 3% additional MZ. At the end of the study, bodyweight gain and feed consumption were not affected by the treatments. Similarly, the addition of up to 2% MZ to the diet did not affect slaughter weight, hot carcass or cold carcass weights, but they decreased at 3% MZ inclusion. No differences were observed between the groups in terms of blood urea nitrogen, plasma glucose, serum creatinine, triglyceride, sodium, potassium and chlorine concentration. However, serum total protein, calcium and phosphorus concentrations were affected by MZ supplementation. The addition of MZ to the ration did not affect the faecal dry matter content and total nitrogen level, yet it increased the ash content of the faeces. Consequently, it was demonstrated that the addition of up to 2% MZ to lamb grower feed does not have a negative impact on performance and carcass yield of the animals, but affects serum total protein, calcium and phosphorus concentrations
Monitoring of trace metals, biochemical composition and growth of Axillary seabream (Pagellus acarne Risso, 1827) in offshore Copper alloy net cage
The study was conducted to assess trace metal contents, biochemical composition and growth performance of axillary seabream (Pagellus acarne Risso, 1827) cultured in a copper alloy mesh cage. A total of 400 axillary seabream (initial mean weight: 176.0±14.0 g), a new candidate species for the Mediterranean aquaculture, were stocked into a high-density polyethylene frame gravity cage and fed a commercial seabream diet for a period of 6 months. At the end of the feeding trial, fish reached a final weight of 264.8±16.8 g with a weight increase of 88.8 g and a feed conversion rate of 2.51. Overall, relative growth rate, specific growth rate and feed conversion ratio were satisfactory and comparable to the pelagic fishes such as gilthead seabream or European seabass, which are presently the main fish species for the Mediterranean aquaculture industry. Trace elements in fish grown in copper alloy net cages over a 6-month period showed satisfactory results, as the metal concentrations in fish tissues such as liver, skin, muscle and gills were below the reported upper limits for human consumption, indicating that copper alloy net is an acceptable and safe material for finfish cage aquaculture. Furthermore, from the growth performance data obtained in the present study, it can be concluded that axillary seabream showed potential for cage farming, and thus is a promising new candidate for the Mediterranean aquaculture industry
CLIC-LHC Based FEL-Nucleus Collider: Feasibility and Physics Search Potential
The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It
is shown that the proposed scheme satisfies all requirements of an ideal photon
source for the Nuclear Resonance Fluorescence method. The tunability,
monochromaticity and high polarization of the FEL beam together with high
statistics and huge energy of LHC nucleus beams will give an unique opportunity
to determine different characteristics of excited nuclear levels. The physics
potential of the proposed collider is illustrated for a beam of Pb nuclei.Comment: 19 pages, 3 figure
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Micro-optical spatial and spectral elements
Interference filters have a defect layer incorporated within a photonic crystal structure and generate a narrow transmission notch within a wide stop band. In this paper, we propose and demonstrate wavelength-tunable spatial filters by introducing diffractive optical elements in the defect layer. The spectral transmission through the device was a function of the local defect layer thickness under broadband illumination. For each wavelength, the spatial transmission followed the contours of equal defect layer optical thickness. The devices were implemented by depositing a one-dimensional photonic crystal with a centrally integrated defect layer on a silicon substrate using plasma-enhanced chemical vapor deposition. The defect layer was lithographically patterned with charge 2, 8-level vortex structures. The spectral transmission peak and linewidth was characterized by separately illuminating each zone of diffractive element using a tunable laser source and compared with model simulations. The spatial transmission through the device was imaged onto a CCD camera. Triangular wedge-shaped zones with wavelength-dependent orientations were observed. These novel devices with spectrally tunable spatial transmission have potential applications in pupil filtering, hyperspectral imaging, and engineered illumination systems
- …
