31,362 research outputs found
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
Constraining conformal field theories with a slightly broken higher spin symmetry
We consider three dimensional conformal field theories that have a higher
spin symmetry that is slightly broken. The theories have a large N limit, in
the sense that the operators separate into single trace and multitrace and obey
the usual large N factorization properties. We assume that the spectrum of
single trace operators is similar to the one that one gets in the Vasiliev
theories. Namely, the only single trace operators are the higher spin currents
plus an additional scalar. The anomalous dimensions of the higher spin currents
are of order 1/N. Using the slightly broken higher spin symmetry we constrain
the three point functions of the theories to leading order in N. We show that
there are two families of solutions. One family can be realized as a theory of
N fermions with an O(N) Chern-Simons gauge field, the other as a N bosons plus
the Chern-Simons gauge field. The family of solutions is parametrized by the 't
Hooft coupling. At special parity preserving points we get the critical O(N)
models, both the Wilson-Fisher one and the Gross-Neveu one. Our analysis also
fixes the on shell three point functions of Vasiliev's theory on AdS_4 or dS_4.Comment: 54 pages, 3 figure
Quantum correlations in a cluster-like system
We discuss a cluster-like 1D system with triplet interaction. We study the
topological properties of this system. We find that the degeneracy depends on
the topology of the system, and well protected against external local
perturbations. All these facts show that the system is topologically ordered.
We also find a string order parameter to characterize the quantum phase
transition. Besides, we investigate two-site correlations including
entanglement, quantum discord and mutual information. We study the different
divergency behaviour of the correlations. The quantum correlation decays
exponentially in both topological and magnetic phases, and diverges in reversed
power law at the critical point. And we find that in TQPT systems, the global
difference of topology induced by dimension can be reflected in local quantum
correlations.Comment: 7 pages, 6 figure
Exactly solvable models and ultracold Fermi gases
Exactly solvable models of ultracold Fermi gases are reviewed via their
thermodynamic Bethe Ansatz solution. Analytical and numerical results are
obtained for the thermodynamics and ground state properties of two- and
three-component one-dimensional attractive fermions with population imbalance.
New results for the universal finite temperature corrections are given for the
two-component model. For the three-component model, numerical solution of the
dressed energy equations confirm that the analytical expressions for the
critical fields and the resulting phase diagrams at zero temperature are highly
accurate in the strong coupling regime. The results provide a precise
description of the quantum phases and universal thermodynamics which are
applicable to experiments with cold fermionic atoms confined to one-dimensional
tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16
pages, 6 figure
Tunneling Qubit Operation on a Protected Josephson Junction Array
We discuss a protected quantum computation process based on a hexagon
Josephson junction array. Qubits are encoded in the punctured array, which is
topologically protected. The degeneracy is related to the number of holes. The
topological degeneracy is lightly shifted by tuning the flux through specific
hexagons. We also show how to perform single qubit operation and basic quantum
gate operations in this system.Comment: 8 pages, 4 figures. The published version in Phys. Rev.,
A81(2010)01232
Tacrolimus enhances the immunosuppressive effect of cyclophosphamide but not hat of leflunomide or mycophenolate mofeti in a model of discortant liver xenotransplantation
Long range magnetic ordering in NaIrO
We report a combined experimental and theoretical investigation of the
magnetic structure of the honeycomb lattice magnet NaIrO, a strong
candidate for a realization of a gapless spin-liquid. Using resonant x-ray
magnetic scattering at the Ir L-edge, we find 3D long range
antiferromagnetic order below T=13.3 K. From the azimuthal dependence of
the magnetic Bragg peak, the ordered moment is determined to be predominantly
along the {\it a}-axis. Combining the experimental data with first principles
calculations, we propose that the most likely spin structure is a novel
"zig-zag" structure
Determination of virtual water content of rice and spatial characteristics analysis in China
China is a water-stressed country, and agriculture consumes the bulk of its
water resources. Assessing the virtual water content (VWC) of crops is one
important way to develop efficient water management measures to alleviate
water resource conflicts among different sectors. In this research, the VWC
of rice, a major crop in China, is taken as the research object. China
covers a vast land area, and the VWC of rice varies widely between different
regions. The VWC of rice in China is assessed and the spatial
characteristics are also analysed. The total VWC is the total volume
of freshwater both consumed and affected by pollution during the crop
production process, including both direct and indirect water use. Prior
calculation frameworks of the VWC of crops did not contain all of the
virtual water content of crops. In addition to the calculation of green,
blue and grey water – the direct water in VWC – the indirect water use of
rice was also calculated, using an input–output model. The percentages of
direct green, blue, grey and indirect water in the total VWC of rice in
China were found to be 43.8, 28.2, 27.6, and 0.4%. The total VWC of rice
generally showed a roughly three-tiered distribution, and decreased from
southeast to northwest. The higher values of direct green water usage were
mainly concentrated in Southeast and Southwest China, while the values
were relatively low in Northwest China and Inner Mongolia. The higher direct
blue water values were mainly concentrated in the eastern and southern
coastal regions and Northwest China, and low values were mainly concentrated
in Southwest China. Grey water values were relatively high in Shanxi and
Guangxi provinces and low in Northeast and Northwest China. The regions with
high values for indirect water were randomly distributed but the regions
with low values were mainly concentrated in Northwest and Southwest China.
For the regions with relatively high total VWC the high values of blue water
made the largest contribution, although for the country as a whole the
direct green water is the most important contributor
- …
