31,173 research outputs found
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
The correlations between the twin kHz QPO frequencies of LMXBs
We analyzed the recently published kHz QPO data in the neutron star low-mass
X-ray binaries (LMXBs), in order to investigate the different correlations of
the twin peak kilohertz quasi-eriodic oscillations (kHz QPOs) in bright Z
sources and in the less luminous Atoll sources. We find that a power-law
relation \no\sim\nt^{b} between the upper and the lower kHz QPOs with
different indices: 1.5 for the Atoll source 4U 1728-34 and
1.9 for the Z source Sco X-1. The implications of our results for
the theoretical models for kHz QPOs are discussed.Comment: 6 pages, accepted by MNRA
Active class discovery and learning for networked data
With the recent explosion of social network applications, active learning has increasingly become an important paradigm for classifying networked data. While existing research has shown promising results by exploiting network properties to improve the active learning performance, they are all based on a static setting where the number and the type of classes underlying the networked data remain stable and unchanged. For most social network applications, the dynamic change of users and their evolving relationships, along with the emergence of new social events, often result in new classes that need to be immediately discovered and labeled for classification. This paper proposes a novel approach called ADLNET for active class discovery and learning with networked data. Our proposed method uses the Dirichlet process defined over class distributions to enable active discovery of new classes, and explicitly models label correlations in the utility function of active learning. Experimental results on two real-world networked data sets demonstrate that our proposed approach outperforms other state-of-the-art methods
Quantum simulation of artificial Abelian gauge field using nitrogen-vacancy center ensembles coupled to superconducting resonators
We propose a potentially practical scheme to simulate artificial Abelian
gauge field for polaritons using a hybrid quantum system consisting of
nitrogen-vacancy center ensembles (NVEs) and superconducting transmission line
resonators (TLR). In our case, the collective excitations of NVEs play the role
of bosonic particles, and our multiport device tends to circulate polaritons in
a behavior like a charged particle in an external magnetic field. We discuss
the possibility of identifying signatures of the Hofstadter "butterfly" in the
optical spectra of the resonators, and analyze the ground state crossover for
different gauge fields. Our work opens new perspectives in quantum simulation
of condensed matter and many-body physics using hybrid spin-ensemble circuit
quantum electrodynamics system. The experimental feasibility and challenge are
justified using currently available technology.Comment: 6 papes+supplementary materia
Universal local pair correlations of Lieb-Liniger bosons at quantum criticality
The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system
featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion
quantum criticality. We analytically calculate finite temperature local pair
correlations for the strong coupling Bose gas at quantum criticality using the
polylog function in the framework of the Yang-Yang thermodynamic equations. We
show that the local pair correlation has the universal value in the quantum critical regime, the TLL phase and the
quasi-classical region, where is the pressure per unit length rescaled by
the interaction energy with interaction
strength and linear density . This suggests the possibility to test
finite temperature local pair correlations for the TLL in the relativistic
dispersion regime and to probe quantum criticality with the local correlations
beyond the TLL phase. Furthermore, thermodynamic properties at high
temperatures are obtained by both high temperature and virial expansion of the
Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference
Exactly solvable models and ultracold Fermi gases
Exactly solvable models of ultracold Fermi gases are reviewed via their
thermodynamic Bethe Ansatz solution. Analytical and numerical results are
obtained for the thermodynamics and ground state properties of two- and
three-component one-dimensional attractive fermions with population imbalance.
New results for the universal finite temperature corrections are given for the
two-component model. For the three-component model, numerical solution of the
dressed energy equations confirm that the analytical expressions for the
critical fields and the resulting phase diagrams at zero temperature are highly
accurate in the strong coupling regime. The results provide a precise
description of the quantum phases and universal thermodynamics which are
applicable to experiments with cold fermionic atoms confined to one-dimensional
tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16
pages, 6 figure
Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe
The Majorana fermion, which is its own anti-particle and obeys non-abelian
statistics, plays a critical role in topological quantum computing. It can be
realized as a bound state at zero energy, called a Majorana zero mode (MZM), in
the vortex core of a topological superconductor, or at the ends of a nanowire
when both superconductivity and strong spin orbital coupling are present. A MZM
can be detected as a zero-bias conductance peak (ZBCP) in tunneling
spectroscopy. However, in practice, clean and robust MZMs have not been
realized in the vortices of a superconductor, due to contamination from
impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM)
states, which hampers further manipulations of Majorana fermions. Here using
scanning tunneling spectroscopy, we show that a ZBCP well separated from the
other discrete CdGM states exists ubiquitously in the cores of free vortices in
the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting
transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is
observed by angle-resolved photoemission spectroscopy, and its topological
nature is confirmed by band calculations. The observed ZBCP can be naturally
attributed to a MZM arising from this chiral topological surface states of a
bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for
studying MZMs and topological quantum computing.Comment: 32 pages, 15 figures (supplementary materials included), accepted by
PR
Spin Squeezing under Non-Markovian Channels by Hierarchy Equation Method
We study spin squeezing under non-Markovian channels, and consider an
ensemble of independent spin-1/2 particles with exchange symmetry. Each
spin interacts with its own bath, and the baths are independent and identical.
For this kind of open system, the spin squeezing under decoherence can be
investigated from the dynamics of the local expectations, and the multi-qubit
dynamics can be reduced into the two-qubit one. The reduced dynamics is
obtained by the hierarchy equation method, which is a exact without
rotating-wave and Born-Markov approximation. The numerical results show that
the spin squeezing displays multiple sudden vanishing and revival with lower
bath temperature, and it can also vanish asymptotically.Comment: 7 pages, 4 figure
The Interpretations For the Low and High Frequency QPO Correlations of X-ray Sources Among White Dwarfs, Neutron Stars and Black Holes
It is found that there exists an empirical linear relation between the high
frequency \nhigh and low frequency \nlow of quasi-periodic oscillations
(QPOs) for black hole candidate (BHC), neutron star (NS) and white dwarf (WD)
in the binary systems, which spans five orders of magnitude in frequency.
For the NS Z (Atoll) sources,
and are identified as the lower kHz QPO frequency
and horizontal branch oscillations (HBOs) \nh (broad noise components); for
the black hole candidates and low-luminosity neutron stars, they are the QPOs
and broad noise components at frequencies between 1 and 10 Hz; for WDs, they
are the ``dwarf nova oscillations'' (DNOs) and QPOs of cataclysmic variables
(CVs). To interpret this relation, our model ascribes to the
Alfv\'en wave oscillation frequency at a preferred radius and to
the same mechanism at another radius. Then, we can obtain \nlow = 0.08
\nhigh and the relation between the upper kHz QPO frequency \nt and HBO to
be \nh \simeq 56 ({\rm Hz}) (\nt/{\rm kHz})^{2}, which are in accordance with
the observed empirical relations. Furthermore, some implications of model are
discussed, including why QPO frequencies of white dwarfs and neutron stars span
five orders of magnitude in frequency. \\Comment: 11 pages, 1 figure, accepted by PAS
- …
