41,395 research outputs found
Breaking the current density threshold in spin-orbit-torque magnetic random access memory
Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising
technology for the next generation of data storage devices. The main bottleneck
of this technology is the high reversal current density threshold. This
outstanding problem of SOT-MRAM is now solved by using a current density of
constant magnitude and varying flow direction that reduces the reversal current
density threshold by a factor of more than the Gilbert damping coefficient. The
Euler-Lagrange equation for the fastest magnetization reversal path and the
optimal current pulse are derived for an arbitrary magnetic cell. The
theoretical limit of minimal reversal current density and current density for a
GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are
respectively of the order of A/cm and A/cm far below
A/cm and A/cm in the conventional strategy. Furthermore,
no external magnetic field is needed for a deterministic reversal in the new
strategy
Recommended from our members
A Preliminary Study on Using Multi-Nozzle Polymer Deposition System to Fabricate Composite Alginate/Carbon Nanotube Tissue Scaffolds
Three-dimensional composite alginate/single wall carbon nanotube (SWCNT) scaffolds
encapsulated with endothelial cells were fabricated by a multi-nozzle biopolymer freeform
deposition system. This system enables the converting of CAD designed scaffold pattern into
process toolpaths and the use of computer control program to guide the nozzle deposition at
spatial position for layered fabrication of 3D tissue scaffolds. The morphological, mechanical,
structural and biological properties of as-fabricated scaffolds were characterized by optical
microscope, SEM, Microtensile testing machine, Alamar Blue Assay, and Live-Dead Assay,
respectively. The multi-nozzle deposition system demonstrated a highly efficient and effective
process to build tissue scaffold or cell embedded constructs. Characterization results showed that
the incorporation of SWCNT into alginate not only enhanced the mechanical strength of the
scaffolds but also improved the cell affinity and the interaction with substrate. Further cell
culture experimental results also showed that the incorporation of SWCNT in alginate enhanced
endothelial cell proliferation compared with pure alginate scaffold.Mechanical Engineerin
Spin relaxation and decoherence of two-level systems
We revisit the concepts of spin relaxation and spin decoherence of two level
(spin-1/2) systems. From two toy-models, we clarify two issues related to the
spin relaxation and decoherence: 1) For an ensemble of two-level particles each
subjected to a different environmental field, there exists an ensemble
relaxation time which is fundamentally different from . When the
off-diagonal coupling of each particle is in a single mode with the same
frequency but a random coupling strength, we show that is finite while
the spin relaxation time of a single spin and the usual ensemble
decoherence time are infinite. 2) For a two-level particle under only a
random diagonal coupling, its relaxation time shall be infinite but its
decoherence time is finite.Comment: 5 pages, 2 figure
Occupation numbers of the harmonically trapped few-boson system
We consider a harmonically trapped dilute -boson system described by a
low-energy Hamiltonian with pairwise interactions. We determine the condensate
fraction, defined in terms of the largest occupation number, of the
weakly-interacting -boson system () by employing a perturbative
treatment within the framework of second quantization. The one-body density
matrix and the corresponding occupation numbers are compared with those
obtained by solving the two-body problem with zero-range interactions exactly.
Our expressions are also compared with high precision {\em{ab initio}}
calculations for Bose gases with that interact through finite-range
two-body model potentials. Non-universal corrections are identified to enter at
subleading order, confirming that different low-energy Hamiltonians,
constructed to yield the same energy, may yield different occupation numbers.
Lastly, we consider the strongly-interacting three-boson system under
spherically symmetric harmonic confinement and determine its occupation numbers
as a function of the three-body "Efimov parameter".Comment: 16 pages, 7 figure
Dynamics of small trapped one-dimensional Fermi gas under oscillating magnetic fields
Deterministic preparation of an ultracold harmonically trapped
one-dimensional Fermi gas consisting of a few fermions has been realized by the
Heidelberg group. Using Floquet formalism, we study the time dynamics of two-
and three-fermion systems in a harmonic trap under an oscillating magnetic
field. The oscillating magnetic field produces a time-dependent interaction
strength through a Feshbach resonance. We explore the dependence of these
dynamics on the frequency of the oscillating magnetic field for
non-interacting, weakly interacting, and strongly interacting systems. We
identify the regimes where the system can be described by an effective
two-state model and an effective three-state model. We find an unbounded
coupling to all excited states at the infinitely strong interaction limit and
several simple relations that characterize the dynamics. Based on our findings,
we propose a technique for driving transition from the ground state to the
excited states using an oscillating magnetic field.Comment: 11 pages, 7 figure
Calculating Biological Behaviors of Epigenetic States in Phage lambda Life Cycle
Gene regulatory network of lambda phage is one the best studied model systems
in molecular biology. More 50 years of experimental study has provided a
tremendous amount of data at all levels: physics, chemistry, DNA, protein, and
function. However, its stability and robustness for both wild type and mutants
has been a notorious theoretical/mathematical problem. In this paper we report
our successful calculation on the properties of this gene regulatory network.
We believe it is of its first kind. Our success is of course built upon
numerous previous theoretical attempts, but following 3 features make our
modeling uniqu:
1) A new modeling method particular suitable for stability and robustness
study;
2) Paying a close attention to the well-known difference of in vivo and in
vitro;
3) Allowing more important role for noise and stochastic effect to play.
The last two points have been discussed by two of us (Ao and Yin,
cond-mat/0307747), which we believe would be enough to make some of previous
theoretical attempts successful, too. We hope the present work would stimulate
a further interest in the emerging field of gene regulatory network.Comment: 16 pages, 3 figures, 1 tabl
- …
