38,142 research outputs found
Antigen presenting capacity of murine splenic myeloid cells
BACKGROUND: The spleen is an important site for hematopoiesis. It supports development of myeloid cells from bone marrow-derived precursors entering from blood. Myeloid subsets in spleen are not well characterised although dendritic cell (DC) subsets are clearly defined in terms of phenotype, development and functional role. Recently a novel dendritic-like cell type in spleen named ‘L-DC’ was distinguished from other known dendritic and myeloid cells by its distinct phenotype and developmental origin. That study also redefined splenic eosinophils as well as resident and inflammatory monocytes in spleen. RESULTS: L-DC are shown to be distinct from known splenic macrophages and monocyte subsets. Using a new flow cytometric procedure, it has been possible to identify and isolate L-DC in order to assess their functional competence and ability to activate T cells both in vivo and in vitro. L-DC are readily accessible to antigen given intravenously through receptor-mediated endocytosis. They are also capable of CD8(+) T cell activation through antigen cross presentation, with subsequent induction of cytotoxic effector T cells. L-DC are MHCII(−) cells and unable to activate CD4(+) T cells, a property which clearly distinguishes them from conventional DC. The myeloid subsets of resident monocytes, inflammatory monocytes, neutrophils and eosinophils, were found to have varying capacities to take up antigen, but were uniformly unable to activate either CD4(+) T cells or CD8(+) T cells. CONCLUSION: The results presented here demonstrate that L-DC in spleen are distinct from other myeloid cells in that they can process antigen for CD8(+) T cell activation and induction of cytotoxic effector function, while both L-DC and myeloid subsets remain unable to activate CD4(+) T cells. The L-DC subset in spleen is therefore distinct as an antigen presenting cell
Screening of cosmological constant in non-local cosmology
We consider a model of non-local gravity with a large bare cosmological
constant, , and study its cosmological solutions. The model is
characterized by a function where
and is a real dimensionless parameter. In the
absence of matter, we find an expanding universe solution with
, that is, a universe with decelarated expansion without any fine-tuning
of the parameter. Thus the effect of the cosmological constant is effectively
shielded in this solution. It has been known that solutions in non-local
gravity often suffer from the existence of ghost modes. In the present case we
find the solution is ghost-free if . This is
quite a weak condition. We argue that the solution is stable against the
includion of matter fields. Thus our solution opens up new possibilities for
solution to the cosmological constant problem.Comment: 7 pages, 1 figure, LaTeX, V2:Some clarifications and references adde
Solving the mystery of human sleep schedules one mutation at a time.
Sleep behavior remains one of the most enigmatic areas of life. The unanswered questions range from "why do we sleep?" to "how we can improve sleep in today's society?" Identification of mutations responsible for altered circadian regulation of human sleep lead to unique opportunities for probing these territories. In this review, we summarize causative circadian mutations found from familial genetic studies to date. We also describe how these mutations mechanistically affect circadian function and lead to altered sleep behaviors, including shifted or shortening of sleep patterns. In addition, we discuss how the investigation of mutations can not only expand our understanding of the molecular mechanisms regulating the circadian clock and sleep duration, but also bridge the pathways between clock/sleep and other human physiological conditions and ailments such as metabolic regulation and migraine headaches
Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability
Sex-specific
computational models of the spontaneously hypertensive rat kidneys:
factors affecting nitric oxide bioavailability. Am J Physiol Renal
Physiol 313: F174 –F183, 2017. First published March 29, 2017;
doi:10.1152/ajprenal.00482.2016.—The goals of this study were to 1)
develop a computational model of solute transport and oxygenation in
the kidney of the female spontaneously hypertensive rat (SHR), and 2)
apply that model to investigate sex differences in nitric oxide (NO)
levels in SHR and their effects on medullary oxygenation and oxidative stress. To accomplish these goals, we first measured NO synthase
(NOS) 1 and NOS3 protein expression levels in total renal microvessels of male and female SHR. We found that the expression of both
NOS1 and NOS3 is higher in the renal vasculature of females
compared with males. To predict the implications of that finding on
medullary oxygenation and oxidative stress levels, we developed a
detailed computational model of the female SHR kidney. The model
was based on a published male kidney model and represents solute
transport and the biochemical reactions among O2, NO, and superoxide (O2
) in the renal medulla. Model simulations conducted using
both male and female SHR kidney models predicted significant radial
gradients in interstitial fluid oxygen tension (PO2) and NO and O2
concentration in the outer medulla and upper inner medulla. The
models also predicted that increases in endothelial NO-generating
capacity, even when limited to specific vascular segments, may
substantially raise medullary NO and PO2 levels. Other potential sex
differences in SHR, including O2
production rate, are predicted to
significantly impact oxidative stress levels, but effects on NO concentration and PO2 are limited.This research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant R01-DK-106102 to A. T. Layton, and by American Heart Association Grant 14GRNT20480199 to J. C. Sullivan. (R01-DK-106102 - National Institute of Diabetes and Digestive and Kidney Diseases; 14GRNT20480199 - American Heart Association)Accepted manuscrip
Reciprocity in Social Networks with Capacity Constraints
Directed links -- representing asymmetric social ties or interactions (e.g.,
"follower-followee") -- arise naturally in many social networks and other
complex networks, giving rise to directed graphs (or digraphs) as basic
topological models for these networks. Reciprocity, defined for a digraph as
the percentage of edges with a reciprocal edge, is a key metric that has been
used in the literature to compare different directed networks and provide
"hints" about their structural properties: for example, are reciprocal edges
generated randomly by chance or are there other processes driving their
generation? In this paper we study the problem of maximizing achievable
reciprocity for an ensemble of digraphs with the same prescribed in- and
out-degree sequences. We show that the maximum reciprocity hinges crucially on
the in- and out-degree sequences, which may be intuitively interpreted as
constraints on some "social capacities" of nodes and impose fundamental limits
on achievable reciprocity. We show that it is NP-complete to decide the
achievability of a simple upper bound on maximum reciprocity, and provide
conditions for achieving it. We demonstrate that many real networks exhibit
reciprocities surprisingly close to the upper bound, which implies that users
in these social networks are in a sense more "social" than suggested by the
empirical reciprocity alone in that they are more willing to reciprocate,
subject to their "social capacity" constraints. We find some surprising linear
relationships between empirical reciprocity and the bound. We also show that a
particular type of small network motifs that we call 3-paths are the major
source of loss in reciprocity for real networks
- …
