11,743 research outputs found

    10,000+ Times Accelerated Robust Subset Selection (ARSS)

    Full text link
    Subset selection from massive data with noised information is increasingly popular for various applications. This problem is still highly challenging as current methods are generally slow in speed and sensitive to outliers. To address the above two issues, we propose an accelerated robust subset selection (ARSS) method. Specifically in the subset selection area, this is the first attempt to employ the p(0<p1)\ell_{p}(0<p\leq1)-norm based measure for the representation loss, preventing large errors from dominating our objective. As a result, the robustness against outlier elements is greatly enhanced. Actually, data size is generally much larger than feature length, i.e. NLN\gg L. Based on this observation, we propose a speedup solver (via ALM and equivalent derivations) to highly reduce the computational cost, theoretically from O(N4)O(N^{4}) to O(N2L)O(N{}^{2}L). Extensive experiments on ten benchmark datasets verify that our method not only outperforms state of the art methods, but also runs 10,000+ times faster than the most related method

    Spectral Unmixing via Data-guided Sparsity

    Full text link
    Hyperspectral unmixing, the process of estimating a common set of spectral bases and their corresponding composite percentages at each pixel, is an important task for hyperspectral analysis, visualization and understanding. From an unsupervised learning perspective, this problem is very challenging---both the spectral bases and their composite percentages are unknown, making the solution space too large. To reduce the solution space, many approaches have been proposed by exploiting various priors. In practice, these priors would easily lead to some unsuitable solution. This is because they are achieved by applying an identical strength of constraints to all the factors, which does not hold in practice. To overcome this limitation, we propose a novel sparsity based method by learning a data-guided map to describe the individual mixed level of each pixel. Through this data-guided map, the p(0<p<1)\ell_{p}(0<p<1) constraint is applied in an adaptive manner. Such implementation not only meets the practical situation, but also guides the spectral bases toward the pixels under highly sparse constraint. What's more, an elegant optimization scheme as well as its convergence proof have been provided in this paper. Extensive experiments on several datasets also demonstrate that the data-guided map is feasible, and high quality unmixing results could be obtained by our method

    An efficient route for electrooxidation of methanol to dimethoxymethane using ionic liquid as electrolyte

    Full text link
    An ionic liquid 1-ethyl-3-methyl imidazolium tetrafloroborate (EmimBF4) was found to be highly active for one-pot synthesis of dimethoxymethane (DMM) by electrooxidation of methanol on platinum electrode, exhibiting 34.7% conversion, 96.9% selectivity to DMM, high current efficiency (99.2%) as well. The electrode reaction mechanism was proposed according to the experimental results and reported literature

    The study of neutron spectra in water bath from Pb target irradiated by 250MeV/u protons

    Full text link
    The spallation neutrons were produced by the irradiation of Pb with 250 MeV protons. The Pb target was surrounded by water which was used to slow down the emitted neutrons. The moderated neutrons in the water bath were measured by using the resonance detectors of Au, Mn and In with Cd cover. According to the measured activities of the foils, the neutron flux at different resonance energy were deduced and the epithermal neutron spectra were proposed. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data to check the validity of the code.Comment: 6 pages,9 figure

    Prime Factorization in the Duality Computer

    Full text link
    We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms are polynomial in the input size.Comment: 4 page

    Spectroscopic properties and antimicrobial activity of dioxomolybdenum(VI) complexes with heterocyclic S,S’-ligands

    Get PDF
    Five new dioxomolybdenum(VI) complexes of the general formula[MoO2(Rdtc)2], 1-5, where Rdtc-refer to piperidine- (Pipdtc), 4-morpholine-(Morphdtc), 4-thiomorpholine-(Timdtc), piperazine- (Pzdtc) or Nmethylpiperazine- (N-Mepzdtc) dithiocarbamates, respectively, have been prepared. Elemental analysis, conductometric measurements, electronic, IR and NMR spectroscopy have been employed to characterize them. Complexes 1-5 contain a cis-MoO2 group and are of an octahedral geometry. Two dithiocarbamato ions join as bidentates with both the sulphur atoms to the molybdenum atom. The presence of different heteroatom in the piperidinо moiety influences the v(C----N) and v(C----S) vibrations, which decrease in the order of the complexes with: Pipdtc &gt; N-Mepipdtc &gt; Morphdtc &gt; Pzdtc &gt; Timdtc ligands. On the basis of spectral data, molecular structures of complexes 1-5 were optimized on semiempirical molecular-orbital level, and the geometries, as obtained from calculations, described. Antimicrobial activity was tested against nine different laboratory control strains of bacteria and two strains of yeast Candida albicans. All tested strains were sensitive. Complexes bearing heteroatom in position 4 of piperidine moiety are significantly more potent against bacteria tested comparing to corresponding ligands

    Superconductivity at 22.3 K in SrFe2-xIrxAs2

    Full text link
    By substituting the Fe with the 5d-transition metal Ir in SrFe2As2, we have successfully synthesized the superconductor SrFe2-xIrxAs2 with Tc = 22.3 K at x = 0.5. X-ray diffraction indicates that the material has formed the ThCr2Si2-type structure with a space group I4/mmm. The temperature dependence of resistivity and dc magnetization both reveal sharp superconducting transitions at around 22 K. An estimate on the diamagnetization signal reveals a high Meissner shielding volume. Interestingly, the normal state resistivity exhibits a roughly linear behavior up to 300 K. The superconducting transitions at different magnetic fields were also measured yielding a slope of -dHc2/dT = 3.8 T/K near Tc. Using the Werthamer-Helfand-Hohenberg (WHH) formula, the upper critical field at zero K is found to be about 58 T. Counting the possible number of electrons doped into the system in SrFe2-xIrxAs2, we argue that the superconductivity in the Ir-doped system is different from the Co-doped case, which should add more ingredients to the underlying physics of the iron pnictide superconductors.Comment: 4 pages, 4 figure
    corecore