6,347 research outputs found

    Optimization and resilience of complex supply-demand networks

    Get PDF
    Acknowledgments This work was supported by NSF under Grant No. 1441352. SPZ and ZGH were supported by NSF of China under Grants No. 11135001 and No. 11275003. ZGH thanks Prof Liang Huang and Xin-Jian Xu for helpful discussions.Peer reviewedPublisher PD

    From insulator to quantum Hall liquid at low magnetic fields

    Full text link
    We have performed low-temperature transport measurements on a GaAs two-dimensional electron system at low magnetic fields. Multiple temperature-independent points and accompanying oscillations are observed in the longitudinal resistivity between the low-field insulator and the quantum Hall (QH) liquid. Our results support the existence of an intermediate regime, where the amplitudes of magneto-oscillations can be well described by conventional Shubnikov-de Haas theory, between the low-field insulator and QH liquid.Comment: Magneto-oscillations governed by Shubnikov-de Haas theory are observed between the low-field insulator and quantum Hall liqui

    Analyses of domains and domain fusions in human proto-oncogenes

    Get PDF
    Background: Understanding the constituent domains of oncogenes, their origins and their fusions may shed new light about the initiation and the development of cancers. Results: We have developed a computational pipeline for identification of functional domains of human genes, prediction of the origins of these domains and their major fusion events during evolution through integration of existing and new tools of our own. An application of the pipeline to 124 well-characterized human oncogenes has led to the identification of a collection of domains and domain pairs that occur substantially more frequently in oncogenes than in human genes on average. Most of these enriched domains and domain pairs are related to tyrosine kinase activities. In addition, our analyses indicate that a substantial portion of the domain-fusion events of oncogenes took place in metazoans during evolution. Conclusion: We expect that the computational pipeline for domain identification, domain origin and domain fusion prediction will prove to be useful for studying other groups of genes. Originally published BMC Bioinformatics, Vol. 10, No. 88, Mar 200

    Studies towards the Total Asymmetric Synthesis of the Pentacyclic Indole Alkaloid Arboflorine: Asymmetric Synthesis of a Key Intermediate

    Get PDF
    The synthesis of a plausible key intermediate for a biomimetic asymmetric synthesis of indole alkaloid arboflorine is described. The method featured the use of Ellman's sulfinamide chemistry for the establishment of the first chiral center, and the Polonovski-Potier reaction for the formation of the alpha-aminonitrile moiety.NSF of China[20832005]; NFFTBS[J1030415]; National Basic Research Program (973 Program) of China[2010CB833200

    Using Type-2 Fuzzy Models to Detect Fall Incidents and Abnormal Gaits Among Elderly

    Get PDF
    — June 2012, 11% of the overall population in Taiwan was over the age of 65. This ratio is higher than the average figure for the United Nations (8%) . Critical issues concerning elderly in healthcare include fall detection, loneliness prevention and retard of obliviousness. In this study we design type-2 fuzzy models that utilize smart phone tri-axial accelerometer signals to detect fall incidents and identify abnormal gaits among elderly. Once a fall incident is detected an alarm is sent to notify the medical staff for taking any necessary treatment. When the proposed system is used as a pedometer, all the tri-axial accelerometer signals are used to identify the gaits during walking. Based on the proposed type-2 fuzzy models, the walking gaits can be identified as normal, left-tilted, and right-tilted. Experimental results from type-2 fuzzy models reveal that the accuracy rates in identifying normal walking and fall over are 92.3% and 100%, respectively, exceeding what are obtained using type-1 fuzzy models

    Origin of the different conductive behavior in pentavalent-ion-doped anatase and rutile TiO2_2

    Full text link
    The electronic properties of pentavalent-ion (Nb5+^{5+}, Ta5+^{5+}, and I5+^{5+}) doped anatase and rutile TiO2_2 are studied using spin-polarized GGA+\emph{U} calculations. Our calculated results indicate that these two phases of TiO2_2 exhibit different conductive behavior upon doping. For doped anatase TiO2_2, some up-spin-polarized Ti 3\emph{d} states lie near the conduction band bottom and cross the Fermi level, showing an \emph{n}-type half-metallic character. For doped rutile TiO2_2, the Fermi level is pinned between two up-spin-polarized Ti 3\emph{d} gap states, showing an insulating character. These results can account well for the experimental different electronic transport properties in Nb (Ta)-doped anatase and rutile TiO2_2.Comment: 4 pages, 5 figure

    Geometric bionics: Lotus effect helps polystyrene nanotube films get good blood compatibility

    Get PDF
    Various biomaterials have been widely used for manufacturing biomedical applications including artificial organs, medical devices and disposable clinical apparatus, such as vascular prostheses, blood pumps, artificial kidney, artificial hearts, dialyzers and plasma separators, which could be used in contact with blood^1^. However, the research tasks of improving hemocompatibility of biomaterials have been carrying out with the development of biomedical requirements^2^. Since the interactions that lead to surface-induced thrombosis occurring at the blood-biomaterial interface become a reason of familiar current complications with grafts therapy, improvement of the blood compatibility of artificial polymer surfaces is, therefore a major issue in biomaterials science^3^. After decades of focused research, various approaches of modifying biomaterial surfaces through chemical or biochemical methods to improve their hemocompatibility were obtained^1^. In this article, we report that polystyrene nanotube films with morphology similar to the papilla on lotus leaf can be used as blood-contacted biomaterials by virtue of Lotus effect^4^. Clearly, this idea, resulting from geometric bionics that mimicking the structure design of lotus leaf, is very novel technique for preparation of hemocompatible biomaterials
    corecore