75,113 research outputs found

    SCDM-k: Localized orbitals for solids via selected columns of the density matrix

    Full text link
    The recently developed selected columns of the density matrix (SCDM) method [J. Chem. Theory Comput. 11, 1463, 2015] is a simple, robust, efficient and highly parallelizable method for constructing localized orbitals from a set of delocalized Kohn-Sham orbitals for insulators and semiconductors with Γ\Gamma point sampling of the Brillouin zone. In this work we generalize the SCDM method to Kohn-Sham density functional theory calculations with k-point sampling of the Brillouin zone, which is needed for more general electronic structure calculations for solids. We demonstrate that our new method, called SCDM-k, is by construction gauge independent and is a natural way to describe localized orbitals. SCDM-k computes localized orbitals without the use of an optimization procedure, and thus does not suffer from the possibility of being trapped in a local minimum. Furthermore, the computational complexity of using SCDM-k to construct orthogonal and localized orbitals scales as O(N log N ) where N is the total number of k-points in the Brillouin zone. SCDM-k is therefore efficient even when a large number of k-points are used for Brillouin zone sampling. We demonstrate the numerical performance of SCDM-k using systems with model potentials in two and three dimensions.Comment: 25 pages, 7 figures; added more background sections, clarified presentation of the algorithm, revised the presentation of previous work, added a more high level overview of the new algorithm, and mildly clarified the presentation of the results (there were no changes to the numerical results themselves

    On the Ground State Wave Function of Matrix Theory

    Full text link
    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.Comment: 21 page

    Lessons from the Ramond sector

    Get PDF
    We revisit the consistency of torus partition functions in (1+1)dd fermionic conformal field theories, combining traditional ingredients of modular invariance/covariance with a modernized understanding of bosonization/fermionization dualities. Various lessons can be learned by simply examining the oft-ignored Ramond sector. For several extremal/kinky modular functions in the bootstrap literature, we can either rule out or identify the underlying theory. We also revisit the N=1{\cal N} = 1 Maloney-Witten partition function by calculating the spectrum in the Ramond sector, and further extending it to include the modular sum of seed Ramond characters. Finally, we perform the full N=1{\cal N} = 1 RNS modular bootstrap and obtain new universal results on the existence of relevant deformations preserving different amounts of supersymmetry.Comment: 23+12 pages, 9 figures, 3 tables, v2: minor change
    corecore