494 research outputs found
Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications
This was the first study to use genipin to cross-link collagen and chitosan.In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding.Key Projects in the National Science and Technology Pillar Program in the Eleventh Five-year Plan Period. Grant Number: 2006BA116B04Guangdong Natural Science Foundation. Grant Number: 07300602Natural Science Foundation Team Project of Guangdong. Grant Number: 4205786State Key Program of National Natural Science of China. Grant Number: 50732003National Basic Research Program of China. Grant Number: 2005CB62390
Multiple-relaxation-time lattice Boltzmann model for compressible fluids
We present an energy-conserving multiple-relaxation-time finite difference
lattice Boltzmann model for compressible flows. This model is based on a
16-discrete-velocity model. The collision step is first calculated in the
moment space and then mapped back to the velocity space. The moment space and
corresponding transformation matrix are constructed according to the group
representation theory. Equilibria of the nonconserved moments are chosen
according to the need of recovering compressible Navier-Stokes equations
through the Chapman-Enskog expansion. Numerical experiments showed that
compressible flows with strong shocks can be well simulated by the present
model. The used benchmark tests include (i) shock tubes, such as the Sod, Lax,
Sjogreen, Colella explosion wave and collision of two strong shocks, (ii)
regular and Mach shock reflections, and (iii) shock wave reaction on
cylindrical bubble problems. The new model works for both low and high speeds
compressible flows. It contains more physical information and has better
numerical stability and accuracy than its single-relaxation-time version.Comment: 11 figures, Revte
Monitoring the Characteristics of the Bohai Sea Ice Using High-Resolution Geostationary Ocean Color Imager (GOCI) Data
Satellite remote sensing data, such as moderate resolution imaging spectroradiometers (MODIS) and advanced very high-resolution radiometers (AVHRR), are being widely used to monitor sea ice conditions and their variability in the Bohai Sea, the southernmost frozen sea in the Northern Hemisphere. Monitoring the characteristics of the Bohai Sea ice can provide crucial information for ice disaster prevention for marine transportation, oil field operation, and regional climate change studies. Although these satellite data cover the study area with fairly high spatial resolution, their typically limited cloudless images pose serious restrictions for continuous observation of short-term dynamics, such as sub-seasonal changes. In this study, high spatiotemporal resolution (500 m and eight images per day) geostationary ocean color imager (GOCI) data with a high proportion of cloud-free images were used to monitor the characteristics of the Bohai Sea ice, including area and thickness. An object-based feature extraction method and an albedo-based thickness inversion model were used for estimating sea ice area and thickness, respectively. To demonstrate the efficacy of the new dataset, a total of 68 GOCI images were selected to analyze the evolution of sea ice area and thickness during the winter of 2012–2013 with severe sea ice conditions. The extracted sea ice area was validated using Landsat Thematic Mapper (TM) data with higher spatial resolution, and the estimated sea ice thickness was found to be consistent with in situ observation results. The entire sea ice freezing–melting processes, including the key events such as the day with the maximum ice area and the first and last days of the frozen season, were better resolved by the high temporal-resolution GOCI data compared with MODIS or AVHRR data. Both characteristics were found to be closely correlated with cumulative freezing/melting degree days. Our study demonstrates the applicability of the GOCI data as an improved dataset for studying the Bohai Sea ice, particularly for purposes that require high temporal resolution data, such as sea ice disaster monitoring
NEMO-Bohai 1.0 : a high-resolution ocean and sea ice modelling system for the Bohai Sea, China
Severe ice conditions in the Bohai Sea could cause serious harm to maritime traffic, offshore oil exploitation, aquaculture, and other economic activities in the surrounding regions. In addition to providing sea ice forecasts for disaster prevention and risk mitigation, sea ice numerical models could help explain the sea ice variability within the context of climate change in marine ecosystems, such as spotted seals, which are the only ice-dependent animal that breeds in Chinese waters. Here, we developed NEMO-Bohai, an ocean-ice coupled model based on the Nucleus for European Modelling of the Ocean (NEMO) model version 4.0 and Sea Ice Modelling Integrated Initiative (SI3) (NEMO4.0-SI3) for the Bohai Sea. This study will present the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of the ocean and sea ice. The model simulations agree with the observations with respect to sea surface height (SSH), temperature (SST), salinity (SSS), currents, and temperature and salinity stratification. The seasonal variation of the sea ice area is well simulated by the model compared to the satellite remote sensing data for the period of 1996-2017. Overall agreement is found for the occurrence dates of the annual maximum sea ice area. The simulated sea ice thickness and volume are in general agreement with the observations with slight overestimations. NEMO-Bohai can simulate seasonal sea ice evolution and long-term interannual variations. Hence, NEMO-Bohai is a valuable tool for long-term ocean and ice simulations and climate change studies.Peer reviewe
Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR–Cas system by binding to target RNA and crRNA
Harnessing type I and type III CRISPR-Cas systems for genome editing
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR array and a donor DNA containing a non-target sequence. Transformation of a pGE plasmid would yield two alternative fates to transformed cells: wild-type cells are to be targeted for chromosomal DNA degradation, leading to cell death, whereas those carrying the mutant gene would survive the cell killing and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided the protospacer adjacent motif (PAM) of an uncharacterized PAM-dependent CRISPR-Cas system can be predicted by bioinformatic analysis
Advances in biological activities of rape bee pollen and its development and utilization
The research and development value of rape bee pollen, a natural health raw material, is increasing as public awareness of health issues develops. This review introduced the various nutrients and active substances contained in rape bee pollen and summarized the biological activities and pharmacological effects of rape bee pollen in antioxidant, anti-inflammatory, immune enhancement, antibacterial, prostate protection, anti-diabetic complications, anti-tumor, intestinal regulation, and ovarian protection. The application of rapeseed bee pollen in bee products, health care products, food, medicine and cosmetics was discussed. The development direction of rapeseed bee pollen was prospected
A \u3cem\u3eLIN28B\u3c/em\u3e Tumor-Specific Transcript in Cancer
The diversity and complexity of the cancer transcriptome may contain transcripts unique to the tumor environment. Here, we report a LIN28B variant, LIN28B-TST, which is specifically expressed in hepatocellular carcinoma (HCC) and many other cancer types. Expression of LIN28B-TST is associated with significantly poor prognosis in HCC patients. LIN28B-TST initiates from a de novo alternative transcription initiation site that harbors a strong promoter regulated by NFYA but not c-Myc. Demethylation of the LIN28B-TST promoter might be a prerequisite for its transcription and transcriptional regulation. LIN28B-TST encodes a protein isoform with additional N-terminal amino acids and is critical for cancer cell proliferation and tumorigenesis. Our findings reveal a mechanism of LIN28B activation in cancer and the potential utility of LIN28B-TST for clinical purposes
Wildfires enhance phytoplankton production in tropical oceans
Wildfire magnitude and frequency have greatly escalated on a global scale. Wildfire products rich in biogenic elements can enter the ocean through atmospheric and river inputs, but their contribution to marine phytoplankton production is poorly understood. Here, using geochemical paleo-reconstructions, a century-long relationship between wildfire magnitude and marine phytoplankton production is established in a fire-prone region of Kimberley coast, Australia. A positive correlation is identified between wildfire and phytoplankton production on a decadal scale. The importance of wildfire on marine phytoplankton production is statistically higher than that of tropical cyclones and rainfall, when strong El Niño Southern Oscillation coincides with the positive phase of Indian Ocean Dipole. Interdecadal chlorophyll-a variation along the Kimberley coast validates the spatial connection of this phenomenon. Findings from this study suggest that the role of additional nutrients from wildfires has to be considered when projecting impacts of global warming on marine phytoplankton production
Wildfires enhance phytoplankton production in tropical oceans
Unidad de excelencia María de Maeztu CEX2019-000940-MWildfire magnitude and frequency have greatly escalated on a global scale. Wildfire products rich in biogenic elements can enter the ocean through atmospheric and river inputs, but their contribution to marine phytoplankton production is poorly understood. Here, using geochemical paleo-reconstructions, a century-long relationship between wildfire magnitude and marine phytoplankton production is established in a fire-prone region of Kimberley coast, Australia. A positive correlation is identified between wildfire and phytoplankton production on a decadal scale. The importance of wildfire on marine phytoplankton production is statistically higher than that of tropical cyclones and rainfall, when strong El Niño Southern Oscillation coincides with the positive phase of Indian Ocean Dipole. Interdecadal chlorophyll-a variation along the Kimberley coast validates the spatial connection of this phenomenon. Findings from this study suggest that the role of additional nutrients from wildfires has to be considered when projecting impacts of global warming on marine phytoplankton production
- …
