9,577 research outputs found
Magnetic Properties of a Superconductor with no Inversion Symmetry
We study the magnetic properties of a superconductor in a crystal without symmetry, in particular how the lack of this symmetry exhibits itself.
We show that, though the penetration depth itself shows no such effect, for
suitable orientation of magnetic field, there is a magnetic field discontinuity
at the interface which shows this absence of symmetry. The magnetic field
profile of a vortex in the plane is shown to be identical to that of an
ordinary anisotropic superconductor except for a shift in the direction by
(see errata). For a vortex along , there is an
induced magnetization along the radial direction.Comment: J. Low Temp. Physics, 140, 67 (2005); with Errat
Phase diagrams of a p-Wave superconductor inside a mesoscopic disc-shaped sample
We study the finite-size and boundary effects on a time-reversal-symmetry
breaking p-wave superconducting state in a mesoscopic disc geometry using
Ginzburg-Landau theory. We show that, for a large parameter range, the system
exhibits multiple phase transitions. The superconducting transition from the
normal state can also be reentrant as a function of external magnetic field.Comment: Revised version published in Physical Review
Comment on "Phonon Spectrum and Dynamical Stability of a Dilute Quantum Degenerate Bose-Fermi Mixture
We show that the conclusions of a recent PRL by Pu et al is incorrect.Comment: late
Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements
Josephson Current between Triplet and Singlet Superconductors
The Josephson effect between triplet and singlet superconductors is studied.
Josephson current can flow between triplet and singlet superconductors due to
the spin-orbit coupling in the spin-triplet superconductor but it is finite
only when triplet superconductor has , where and
are the perpendicular components of orbital angular momentum and spin angular
momentum of the triplet Cooper pairs, respectively. The recently observed
temperature and orientational dependence of the critical current through a
Josephson junction between UPt and Nb is investigated by considering a
non-unitary triplet state.Comment: 4 pages, no figure
Signature of superconducting states in cubic crystal without inversion symmetry
The effects of absence of inversion symmetry on superconducting states are
investigated theoretically. In particular we focus on the noncentrosymmetric
compounds which have the cubic symmetry like LiPtB. An appropriate
and isotropic spin-orbital interaction is added in the Hamiltonian and it acts
like a magnetic monopole in the momentum space. The consequent pairing
wavefunction has an additional triplet component in the pseudospin space, and a
Zeeman magnetic field can induce a collinear supercurrent
with a coefficient . The effects of anisotropy embedded in the cubic
symmetry and the nodal superconducting gap function on are also
considered. From the macroscopic perspectives, the pair of mutually induced
and magnetization can affect the distribution of magnetic
field in such noncentrosymmetric superconductors, which is studied through
solving the Maxwell equation in the Meissner geometry as well as the case of a
single vortex line. In both cases, magnetic fields perpendicular to the
external ones emerge as a signature of the broken symmetry.Comment: 16 pages in pre-print forma
Point defect concentrations in metastable Fe-C alloys
Point defect species and concentrations in metastable Fe-C alloys are
determined using density functional theory and a constrained free-energy
functional. Carbon interstitials dominate unless iron vacancies are in
significant excess, whereas excess carbon causes greatly enhances vacancy
concentration. Our predictions are amenable to experimental verification; they
provide a baseline for rationalizing complex microstructures known in hardened
and tempered steels, and by extension other technological materials created by
or subjected to extreme environments
ML symbol synchronization for OFDM-based WLANs in unknown frequency-selective fading channels
Based on the maximum-likelihood principle and the preamble structure of IEEE 802.11a WLAN standard, this paper proposes a new symbol synchronization algorithm for IEEE 802.11a WLANs over frequency-selective fading channels. In addition to the physical channel, the effects of filtering and unknown sampling phase offset are also considered. Loss in system performance due to synchronization error is used as a performance criterion. Computer simulations show that the proposed algorithm has comparable performances to the algorithm based on the generalized Akaike information criterion (GAIC), but the proposed algorithm exhibits reduced complexity. © 2004 IEEE.published_or_final_versio
Spectral Decomposition of Broad-Line AGNs and Host Galaxies
Using an eigenspectrum decomposition technique, we separate the host galaxy
from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from
the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75.
The decomposition technique uses separate sets of galaxy and quasar
eigenspectra to efficiently and reliably separate the AGN and host
spectroscopic components. The technique accurately reproduces the host galaxy
spectrum, its contributing fraction, and its classification. We show how the
accuracy of the decomposition depends upon S/N, host galaxy fraction, and the
galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN
host galaxies spans a wide range of spectral types, but the distribution
differs significantly from inactive galaxies. In particular, post-starburst
activity appears to be much more common among AGN host galaxies. The
luminosities of the hosts are much higher than expected for normal early-type
galaxies, and their colors become increasingly bluer than early-type galaxies
with increasing host luminosity. Most of the AGNs with detected hosts are
emitting at between 1% and 10% of their estimated Eddington luminosities, but
the sensitivity of the technique usually does not extend to the Eddington
limit. There are mild correlations among the AGN and host galaxy
eigencoefficients, possibly indicating a link between recent star formation and
the onset of AGN activity. The catalog of spectral reconstruction parameters is
available as an electronic table.Comment: 18 pages; accepted for publication in A
- …
