7 research outputs found

    Topological fractal networks introduced by mixed degree distribution

    Get PDF
    Several fundamental properties of real complex networks, such as the small-world effect, the scale-free degree distribution, and recently discovered topological fractal structure, have presented the possibility of a unique growth mechanism and allow for uncovering universal origins of collective behaviors. However, highly clustered scale-free network, with power-law degree distribution, or small-world network models, with exponential degree distribution, are not self-similarity. We investigate networks growth mechanism of the branching-deactivated geographical attachment preference that learned from certain empirical evidence of social behaviors. It yields high clustering and spectrums of degree distribution ranging from algebraic to exponential, average shortest path length ranging from linear to logarithmic. We observe that the present networks fit well with small-world graphs and scale-free networks in both limit cases (exponential and algebraic degree distribution respectively), obviously lacking self-similar property under a length-scale transformation. Interestingly, we find perfect topological fractal structure emerges by a mixture of both algebraic and exponential degree distributions in a wide range of parameter values. The results present a reliable connection among small-world graphs, scale-free networks and topological fractal networks, and promise a natural way to investigate universal origins of collective behaviors.Comment: 14 pages, 6 figure

    A Learning Framework for Blind Source Separation Using Generalized Eigenvalues

    Full text link

    A New Modified Hybrid Learning Algorithm for Feedforward Neural Networks

    No full text

    A THEORETICAL ANALYSIS OF MULTISCALE ENTROPY UNDER THE INVERSE GAUSSIAN DISTRIBUTION

    Full text link
    Multiscale entropy (MSE) discloses the intrinsic multiple scales in the complexity of physical and physiological signals, which are usually featured by heavy-tailed distributions. Most of these research results are pure experimental search, till Costa et al. made the first attempt to the theoretical basis of MSE. However, the analysis only supports the Gaussian distribution [Phys. Rev. E71, 021906 (2005)]. In this paper, we present the theoretical basis of MSE under the inverse Gaussian distribution, which is a typical model for physiological, physical and financial data sets. The analysis is applicable to uncorrelated inverse Gaussian process and 1/f noise with the multivariate inverse Gaussian distribution, providing a reliable foundation for potential applications of MSE to explore complex physical and physiological time series. </jats:p
    corecore