1,707 research outputs found
Modified Kedem-Katchalsky equations for osmosis through nano-pore
This work presents a modified Kedem-Katchalsky equations for osmosis through
nano-pore. osmotic reflection coefficient of a solute was found to be chiefly
affected by the entrance of the pore while filtration reflection coefficient
can be affected by both the entrance and the internal structure of the pore.
Using an analytical method, we get the quantitative relationship between
osmotic reflection coefficient and the molecule size. The model is verified by
comparing the theoretical results with the reported experimental data of
aquaporin osmosis. Our work is expected to pave the way for a better
understanding of osmosis in bio-system and to give us new ideas in designing
new membranes with better performance.Comment: 19 pages, 4 figure
Fuzzy logic damping controller for FACTS devices in interconnected power systems
Fuzzy controllers are designed for flexible AC transmission systems (FACTS) in interconnected power systems. Two typical FACTS devices, a static synchronous compensator (STATCOM) and a unified power flow controller (UPFC), are used as examples to show that FACTS devices with well-designed fuzzy controllers can significantly improve the dynamic behavior of interconnected power systems.published_or_final_versio
The Making of Identities and Discourses: Urban Grassroots Environmentalism in China
From the Washington University Senior Honors Thesis Abstracts (WUSHTA), Spring 2018. Published by the Office of Undergraduate Research. Joy Zalis Kiefer, Director of Undergraduate Research and Associate Dean in the College of Arts & Sciences; Lindsey Paunovich, Editor; Helen Human, Programs Manager and Assistant Dean in the College of Arts and Sciences Mentor: Bret Gustafso
KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway.
Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma
THE MARKET REACTION TO STOCK SPLIT ON ACTUAL STOCK SPLIT DAY
MSc in Finance Project-Simon Fraser Universit
MicroRNA-483 amelioration of experimental pulmonary hypertension.
Endothelial dysfunction is critically involved in the pathogenesis of pulmonary arterial hypertension (PAH) and that exogenously administered microRNA may be of therapeutic benefit. Lower levels of miR-483 were found in serum from patients with idiopathic pulmonary arterial hypertension (IPAH), particularly those with more severe disease. RNA-seq and bioinformatics analyses showed that miR-483 targets several PAH-related genes, including transforming growth factor-β (TGF-β), TGF-β receptor 2 (TGFBR2), β-catenin, connective tissue growth factor (CTGF), interleukin-1β (IL-1β), and endothelin-1 (ET-1). Overexpression of miR-483 in ECs inhibited inflammatory and fibrogenic responses, revealed by the decreased expression of TGF-β, TGFBR2, β-catenin, CTGF, IL-1β, and ET-1. In contrast, inhibition of miR-483 increased these genes in ECs. Rats with EC-specific miR-483 overexpression exhibited ameliorated pulmonary hypertension (PH) and reduced right ventricular hypertrophy on challenge with monocrotaline (MCT) or Sugen + hypoxia. A reversal effect was observed in rats that received MCT with inhaled lentivirus overexpressing miR-483. These results indicate that PAH is associated with a reduced level of miR-483 and that miR-483 might reduce experimental PH by inhibition of multiple adverse responses
- …
